scholarly journals Mechanochemical preparation of piezoelectric nanomaterials: BN, MoS2 and WS2 2D materials and their glycine-cocrystals

2020 ◽  
Vol 5 (2) ◽  
pp. 331-335 ◽  
Author(s):  
Viviana Jehová González ◽  
Antonio M. Rodríguez ◽  
Ismael Payo ◽  
Ester Vázquez

Different 2D-layered materials of transition metal dichalcogenides (TMDCs) such as boron nitride (BN) or molybdenum disulphide (MoS2) have been theorised to have piezoelectric behaviour.

Author(s):  
Manoj K. Jana ◽  
C. N. R. Rao

The discovery of graphene marks a major event in the physics and chemistry of materials. The amazing properties of this two-dimensional (2D) material have prompted research on other 2D layered materials, of which layered transition metal dichalcogenides (TMDCs) are important members. Single-layer and few-layer TMDCs have been synthesized and characterized. They possess a wide range of properties many of which have not been known hitherto. A typical example of such materials is MoS 2 . In this article, we briefly present various aspects of layered analogues of graphene as exemplified by TMDCs. The discussion includes not only synthesis and characterization, but also various properties and phenomena exhibited by the TMDCs. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’.


SPIN ◽  
2015 ◽  
Vol 05 (04) ◽  
pp. 1540011 ◽  
Author(s):  
Guohui Su ◽  
Xing Wu ◽  
Wenqi Tong ◽  
Chungang Duan

The recent emergence of two-dimensional (2D) layered materials — graphene and transition metal dichalcogenides — opens a new avenue for exploring the internal quantum degrees of freedom of electrons and their potential for new electronics. Here, we provide a brief review of experimental achievements concerning electrical spin injection, spin transport, graphene nanoribbons spintronics and transition metal dichalcogenides spin and pseudospins. Future research in 2D layered materials spintronics will need to address the development of applications such as spin transistors and spin logic devices, as well as exotic physical properties including pseudospins-valley phenomena in graphene and other 2D materials.


2021 ◽  
Vol 3 (1) ◽  
pp. 272-278
Author(s):  
Pilar G. Vianna ◽  
Aline dos S. Almeida ◽  
Rodrigo M. Gerosa ◽  
Dario A. Bahamon ◽  
Christiano J. S. de Matos

The scheme illustrates a monolayer transition-metal dichalcogenide on an epsilon-near-zero substrate. The substrate near-zero dielectric constant is used as the enhancement mechanism to maximize the SHG nonlinear effect on monolayer 2D materials.


Author(s):  
Sai Manoj Gali ◽  
David Beljonne

Transition Metal Dichalcogenides (TMDCs) are emerging as promising two-dimensional (2D) materials. Yet, TMDCs are prone to inherent defects such as chalcogen vacancies, which are detrimental to charge transport. Passivation of...


Nanoscale ◽  
2021 ◽  
Author(s):  
Conor Patrick Cullen ◽  
Cormac Ó Coileáin ◽  
John B McManus ◽  
Oliver Hartwig ◽  
David McCloskey ◽  
...  

Group-10 transition metal dichalcogenides (TMDs) are rising in prominence within the highly innovative field of 2D materials. While PtS2 has been investigated for potential electronic applications, due to its high...


2017 ◽  
Vol 29 (43) ◽  
Author(s):  
Vidya Kochat ◽  
Amey Apte ◽  
Jordan A. Hachtel ◽  
Hiroyuki Kumazoe ◽  
Aravind Krishnamoorthy ◽  
...  

2019 ◽  
Vol 116 (42) ◽  
pp. 20844-20849 ◽  
Author(s):  
Cong Su ◽  
Zongyou Yin ◽  
Qing-Bo Yan ◽  
Zegao Wang ◽  
Hongtao Lin ◽  
...  

Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n-CmH2m+1NH2, with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS2, 1T′-MoTe2, WTe2, WSe2, TaS2, and NbSe2). As a representative example, n-hexylamine (m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP’s lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H2 annealing, and organic solvents, but can be removed by certain organic acids.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5843
Author(s):  
Rosaria Verduci ◽  
Antonio Agresti ◽  
Valentino Romano ◽  
Giovanna D’Angelo

The last decade has witnessed the advance of metal halide perovskites as a promising low-cost and efficient class of light harvesters used in solar cells (SCs). Remarkably, the efficiency of lab-scale perovskite solar cells (PSCs) reached a power conversion efficiency of 25.5% in just ~10 years of research, rivalling the current record of 26.1% for Si-based PVs. To further boost the performances of PSCs, the use of 2D materials (such as graphene, transition metal dichalcogenides and transition metal carbides, nitrides and carbonitrides) has been proposed, thanks to their remarkable optoelectronic properties (that can be tuned with proper chemical composition engineering) and chemical stability. In particular, 2D materials have been demonstrated as promising candidates for (i) accelerating hot carrier transfer across the interfaces between the perovskite and the charge extraction layers; (ii) improving the crystallization of the perovskite layers (when used as additives in the precursor solution); (iii) favoring electronic bands alignment through tuning of the work function. In this mini-review, we discuss the physical mechanisms underlying the increased efficiency of 2D material-based PSCs, focusing on the three aforementioned effects.


Nanoscale ◽  
2021 ◽  
Author(s):  
Zihao He ◽  
Xingyao Gao ◽  
Di Zhang ◽  
Ping Lu ◽  
Xuejing Wang ◽  
...  

Two-dimensional (2D) materials with robust ferromagnetic behavior have attracted great interest because of their potential applications in next-generation nanoelectronic devices. Aside from graphene and transition metal dichalcogenides, Bi-based layered oxide...


2019 ◽  
Vol 31 (44) ◽  
pp. 1970314
Author(s):  
Davide Tedeschi ◽  
Elena Blundo ◽  
Marco Felici ◽  
Giorgio Pettinari ◽  
Boqing Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document