Synthesis of ternary metal oxides as positive electrodes for Mg–Li hybrid ion batteries

Nanoscale ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 924-932 ◽  
Author(s):  
Muhammad Asif ◽  
Muhammad Rashad ◽  
Zeeshan Ali ◽  
Iftikhar Ahmed

(NiMnCo)3O4 multi-shelled hollow sphere cathode exhibited a reversible capacity of 550 mA h g−1 (at 50 mA g−1), with a specific energy of 368 W h kg−1, which is higher than previously reported MLIBs.

2021 ◽  
Author(s):  
Amar Laxman Jadhav ◽  
Sharad Laxman Jadhav ◽  
Anamika Vitthal Kadam

Recently, the various porous nano metal oxides used for the electrochemical energy storage supercapacitor applications. Some researchers focus on the binary as well as ternary metal oxides and more metal oxide complex composite materials used for the supercapacitors. In the review article focused on the effect of different metals doped in a nickel oxide nano material on the electrochemical capacitive performance, discussion on methodologies, charge storage mechanism, latest research articles and prepared nanostructures. Nowadays nickel oxide is developing electrode material for storage of charge due to its higher thermal stability, excellent chemical stability, cost effective materials, higher theoretical values of specific capacitance, naturally rich and environment friendliness material. The various metals doped in NiO and their composite oxides have shown good structural stability, reversible capacity, long cycling stability and have been also studied nano structured electrode materials for electrochemical supercapacitor applications.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1230
Author(s):  
Jessica Manzi ◽  
Annalisa Paolone ◽  
Oriele Palumbo ◽  
Domenico Corona ◽  
Arianna Massaro ◽  
...  

In this manuscript, we report a detailed physico-chemical comparison between the α- and β-polymorphs of the NaMnO2 compound, a promising material for application in positive electrodes for secondary aprotic sodium batteries. In particular, the structure and vibrational properties, as well as electrochemical performance in sodium batteries, are compared to highlight differences and similarities. We exploit both laboratory techniques (Raman spectroscopy, electrochemical methods) and synchrotron radiation experiments (Fast-Fourier Transform Infrared spectroscopy, and X-ray diffraction). Notably the vibrational spectra of these phases are here reported for the first time in the literature as well as the detailed structural analysis from diffraction data. DFT+U calculations predict both phases to have similar electronic features, with structural parameters consistent with the experimental counterparts. The experimental evidence of antisite defects in the beta-phase between sodium and manganese ions is noticeable. Both polymorphs have been also tested in aprotic batteries by comparing the impact of different liquid electrolytes on the ability to de-intercalated/intercalate sodium ions. Overall, the monoclinic α-NaMnO2 shows larger reversible capacity exceeding 175 mAhg−1 at 10 mAg−1.


Nanoscale ◽  
2018 ◽  
Vol 10 (33) ◽  
pp. 15588-15599 ◽  
Author(s):  
Zoya Sadighi ◽  
Jiapeng Liu ◽  
Francesco Ciucci ◽  
Jang-Kyo Kim

Ternary metal sulfides and ternary metal oxides have received much attention as potential electrodes for high performance rechargeable batteries.


2019 ◽  
Vol 75 (7) ◽  
pp. 969-978 ◽  
Author(s):  
Erbo Cheng ◽  
Shoushuang Huang ◽  
Dayong Chen ◽  
Ruting Huang ◽  
Qing Wang ◽  
...  

Metal oxides have a large storage capacity when employed as anode materials for lithium-ion batteries (LIBs). However, they often suffer from poor capacity retention due to their low electrical conductivity and huge volume variation during the charge–discharge process. To overcome these limitations, fabrication of metal oxides/carbon hybrids with hollow structures can be expected to further improve their electrochemical properties. Herein, ZnO-Co3O4 nanocomposites embedded in N-doped carbon (ZnO-Co3O4@N-C) nanocages with hollow dodecahedral shapes have been prepared successfully by the simple carbonizing and oxidizing of metal–organic frameworks (MOFs). Benefiting from the advantages of the structural features, i.e. the conductive N-doped carbon coating, the porous structure of the nanocages and the synergistic effects of different components, the as-prepared ZnO-Co3O4@N-C not only avoids particle aggregation and nanostructure cracking but also facilitates the transport of ions and electrons. As a result, the resultant ZnO-Co3O4@N-C shows a discharge capacity of 2373 mAh g−1 at the first cycle and exhibits a retention capacity of 1305 mAh g−1 even after 300 cycles at 0.1 A g−1. In addition, a reversible capacity of 948 mAh g−1 is obtained at a current density of 2 A g−1, which delivers an excellent high-rate cycle ability.


2017 ◽  
Vol 63 (6) ◽  
pp. 341-374 ◽  
Author(s):  
Markus B. Schütz ◽  
Lisong Xiao ◽  
Thomas Lehnen ◽  
Thomas Fischer ◽  
Sanjay Mathur

2018 ◽  
Vol 9 ◽  
pp. 311-318 ◽  
Author(s):  
Bei Long ◽  
Lei Luo ◽  
Jingnan Zhang ◽  
Muhammad-Sadeeq Balogun ◽  
Shuqin Song ◽  
...  

2015 ◽  
Vol 3 (1) ◽  
pp. 43-59 ◽  
Author(s):  
Yufei Zhang ◽  
Laiquan Li ◽  
Haiquan Su ◽  
Wei Huang ◽  
Xiaochen Dong

Binary transition metal oxides (BTMOs) possess higher reversible capacity, better structural stability and electronic conductivity, and have been widely studied to be novel electrode materials for supercapacitors.


Sign in / Sign up

Export Citation Format

Share Document