scholarly journals Sensitive electrochemical sensor based on poly(l-glutamic acid)/graphene oxide composite material for simultaneous detection of heavy metal ions

RSC Advances ◽  
2019 ◽  
Vol 9 (30) ◽  
pp. 17325-17334 ◽  
Author(s):  
Wei Yi ◽  
Zihua He ◽  
Junjie Fei ◽  
Xiaohua He

A novel electrochemical sensor with high stability and good reproducibility for the simultaneous detection of heavy metal ions was prepared by using PGA/GO to modify the GCE, showing high sensitivity of superior to most of the reported values.

2017 ◽  
Vol 9 (48) ◽  
pp. 6801-6807 ◽  
Author(s):  
SongGe Zhang ◽  
Han Zhu ◽  
PiMing Ma ◽  
Fang Duan ◽  
WeiFu Dong ◽  
...  

The key issue in efficient electrochemical detection of trace heavy metal ions (HMIs) is to design hierarchical nanostructure electrodes with high sensitivity and low detection limit.


2014 ◽  
Vol 6 (15) ◽  
pp. 5760-5765 ◽  
Author(s):  
Guishen Liu ◽  
Jianpeng Chen ◽  
Xiaodong Hou ◽  
Wensheng Huang

It is quite important to develop sensitive and simple analytical methods for the detection of toxic heavy metal ions, such as Cd2+ and Pb2+.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 815 ◽  
Author(s):  
Mihray Abdulla ◽  
Ahmat Ali ◽  
Ruxangul Jamal ◽  
Tursunnisahan Bakri ◽  
Wei Wu ◽  
...  

Heavy metal ions in water, cosmetics, and arable land have become a world-wide issue as they cause a variety of diseases and even death to humans and animals when a certain level is exceeded. Therefore, it is necessary to development a new kind of sensor material for the determination of heavy metal ions. In this paper, we present an electrochemical sensor based on composite material (thiol(–SH) grafted poly(3,4-proplenedioxythiophene) (PProDOT(MeSH)2)/ porous silicon spheres (Si) composite, denoted as PProDOT(MeSH)2@Si) from the incorporation of thiol(–SH) grafted poly(3,4-proplenedioxythiophene) (PProDOT(MeSH)2) with porous silicon spheres (Si) for the electrochemical detection of heavy metal ions (Cd(II), Pb(II), and Hg(II)). The PProDOT(MeSH)2@Si composite was synthesized via a chemical oxidative polymerization method. The structure and morphology of PProDOT(MeSH)2@Si composite were characterized by Fourier transform infrared (FT-IR), Ultraviolet–visible spectroscopy (UV–Vis), X-ray diffraction (XRD), scanning electron microscope (SEM), Transmission electron microscope (TEM), and Brunauer−Emmett−Teller (BET). Furthermore, the electrochemical performance of PProDOT(MeSH)2@Si was evaluated by detecting of Cd(II), Pb(II), and Hg(II) ions using the differential pulse voltammetry (DPV) method. The relationship between structural properties and the electrochemical performance was systematically studied. The results showed that the entry of two thiol-based chains to the monomer unit resulted in an increase in electrochemical sensitivity in PProDOT(MeSH)2, which was related to the interaction between thiol group(-SH) and heavy metal ions. And, the combination of PProDOT(MeSH)2 with Si could improve the electrocatalytic efficiency of the electrode material. The PProDOT(MeSH)2@Si/GCE exhibited high selectivity and sensitivity in the rage of 0.04 to 2.8, 0.024 to 2.8, and 0.16 to 3.2 μM with the detection limit of 0.00575, 0.0027, and 0.0017 µM toward Cd(II), Pb(II), and Hg(II), respectively. The interference studies demonstrated that the PProDOT(MeSH)2@Si/GCE possessed a low mutual interference and high selectivity for simultaneous detection of Cd(II), Pb(II), and Hg(II) ions.


2021 ◽  
Vol 56 (13) ◽  
pp. 8172-8185
Author(s):  
Manh B. Nguyen ◽  
Dau Thi Ngoc Nga ◽  
Vu Thi Thu ◽  
Benoît Piro ◽  
Thuan Nguyen Pham Truong ◽  
...  

2017 ◽  
Vol 100 (2) ◽  
pp. 560-565 ◽  
Author(s):  
Jibran Iqbal ◽  
Yiping Du ◽  
Fares Howari ◽  
Mahmoud Bataineh ◽  
Nawshad Muhammad ◽  
...  

Abstract Sensitive detection of heavy metal ions in water is of great importance considering the effects that heavy metals have on public health. A developed fluidized bed enrichment technique was used to concentrate and detect low concentrations of Cu2+, Co2+, and Ni2+ in water samples by near-IR diffuse reflectance (NIDR) spectroscopy (NIDRS) directly without using any chemicals or reagents. The NIDR spectraof adsorbent were measured on-line, and quantitative detection was achieved by applying a built partial least-squares chemometric model. Sensitivity and accuracy was improved significantly because large-volume mixture solutions were used in the enrichment process. Root mean square error of cross-validation values for Cu2+, Co2+, and Ni2+ were 0.29, 0.41, and 0.35 μg/mL, respectively, with mean relative error values in the acceptable range of 6.56–10.27%. This study confirms the potential application of fluidized bed enrichment combined with NIDRS and chemometrics for the simultaneous detection of trace heavy metal ions in water, with low relative error.


RSC Advances ◽  
2014 ◽  
Vol 4 (47) ◽  
pp. 24653-24657 ◽  
Author(s):  
Xuezhong Gong ◽  
Yunlong Bi ◽  
Yihua Zhao ◽  
Guozhen Liu ◽  
Wey Yang Teoh

Facile functionalization of graphene oxide sheets on gold surface results in complexation-enhanced electrochemical detection of heavy metal ions, shown here for Pb2+, Cu2+ and Hg2+, with improved detection limits by two orders of magnitude relative to the control electrode.


Author(s):  
Xiaoyun Xu ◽  
Xiaoyi Lv ◽  
Fei Tan ◽  
Yanping Li ◽  
Chao Geng ◽  
...  

Abstract An efficient and sensitive electrochemical sensor for simultaneous detection of heavy metal ions was developed based on furfural/reduced graphene oxide composites (FF/RGO). The preparation of FF/RGO were performed through a one-step high-pressure assisted hydrothermal treatment, which is recommended as a green, convenient, and efficient way for the reduction of graphene oxide and the production of FF/RGO composites. RGO not only serves as the skeleton for furfural loading but also improves the conductivity of the composites in the matrix. FF/RGO with large specific surface area and abundant oxygen-containing functional groups was used to provide more binding sites for the effificient adsorption of heavy-metal ions due to the interaction between hydrophilic groups (-COOH, -OH, and -CHO) and metal cations. The developed sensor showed identifiable electrochemical response toward the heavy metal ions separately and simultaneously, exhibiting superior stability, outstanding sensitivity, selectivity and excellent analytical performance. Impressively, the sensor developed in this experiment has been successfully applied to the simultaneous determination of various heavy metal ions in actual samples, which has definitely exhibited a promising prospect in practical application.


Sign in / Sign up

Export Citation Format

Share Document