scholarly journals Influence of composition on the external quantum efficiency of reduced graphene oxide/carbon nanoparticle based photodetector used for human body IR detection

RSC Advances ◽  
2019 ◽  
Vol 9 (33) ◽  
pp. 18996-19005 ◽  
Author(s):  
Mohammad Sahabul Alam ◽  
Monny Akter Boby ◽  
Farzana Aktar Chowdhury ◽  
Hamad Albrithen ◽  
Mohammad Abul Hossain

We report an efficient infrared (IR) detector comprising reduced graphene oxide (RGO) and carbon nanoparticles (CNPs) for detecting human body IR radiation under ambient conditions.

2016 ◽  
Vol 52 (73) ◽  
pp. 10988-10991 ◽  
Author(s):  
Shaobo Li ◽  
Zhaofeng Wang ◽  
Hanmei Jiang ◽  
Limei Zhang ◽  
Jingzheng Ren ◽  
...  

In this work, we presented a novel route to synthesize boron doped reduced graphene oxide (rGO) by using the dielectric barrier discharge (DBD) plasma technology under ambient conditions.


ChemCatChem ◽  
2020 ◽  
Vol 12 (19) ◽  
pp. 4825-4830
Author(s):  
Xiao Zhang ◽  
Kai‐Hong Chen ◽  
Zhi‐Hua Zhou ◽  
Liang‐Nian He

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Tomasz Rydzkowski ◽  
Kazimierz Reszka ◽  
Mieczysław Szczypiński ◽  
Michał Marek Szczypiński ◽  
Elżbieta Kopczyńska ◽  
...  

The aim of the present study is to examine the effect of the addition of carbon nanoparticles (σsp2 hybridization) on the mechanical properties of foamed polystyrene. In this work, we focus on the study of the impact of compressive stress, tensile strength, bending strength, thermal conductivity ratio (λ), and water absorption of expanded polystyrene (EPS) reinforced with reduced graphene oxide and graphite. The results were compared with pristine EPS and reduced graphene oxide-reinforced EPS. All the nanocomposite specimens used for testing had a similar density. The study reveals that the nanocomposites exhibit different thermal conductivities and mechanical properties in comparison to pristine EPS. The enhancement in the properties of the nanocomposite could be associated with a more extensive structure of elementary cells of expanded polystyrene granules.


2019 ◽  
Vol 55 (72) ◽  
pp. 10717-10720 ◽  
Author(s):  
Hongtao Xie ◽  
Qin Geng ◽  
Xin Li ◽  
Ting Wang ◽  
Yonglan Luo ◽  
...  

Ultrasmall CeO2 on the surface of rGO sheets exhibits electrocatalytic performance towards artificial N2 conversion to NH3 with excellent selectivity.


2020 ◽  
Vol 8 (1) ◽  
pp. 77-81 ◽  
Author(s):  
Runbo Zhao ◽  
Chuangwei Liu ◽  
Xiaoxue Zhang ◽  
Xiaojuan Zhu ◽  
Peipei Wei ◽  
...  

A Ru2P–reduced graphene oxide hybrid acts as a superior catalyst for electrochemical N2 fixation in 0.1 M HCl, achieving a large NH3 yield of 32.8 μg h−1mgcat.−1 and a high faradaic efficiency of 13.04%−0.05 V vs. the reversible hydrogen electrode.


2020 ◽  
Vol 304 ◽  
pp. 111884 ◽  
Author(s):  
G. Tabares ◽  
A. Redondo-Cubero ◽  
L. Vazquez ◽  
M. Revenga ◽  
S. Cortijo-Campos ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu-Sung Chang ◽  
Feng-Kuan Chen ◽  
Du-Cheng Tsai ◽  
Bing-Hau Kuo ◽  
Fuh-Sheng Shieu

AbstractIn this study, we use nitrogen-doped to improving the gas-sensing properties of reduced graphene oxide. Graphene oxide was prepared according to a modified Hummers’ method and then nitrogen-doped reduced graphene oxide (N-rGO) was synthesized by a hydrothermal method using graphene oxide and NH4OH as precursors. The rGO is flat and smooth with a sheet-like morphology while the N-rGO exhibits folded morphology. This type of folding of the surface morphology can increase the gas sensitivity. The N-rGO and the rGO sensors showed n-type and p-type semiconducting behaviors in ambient conditions, respectively, and were responsive to low concentrations of NO gases (< 1000 ppb) at room temperature. The gas-sensing results showed that the N-rGO sensors could detect NO gas at concentrations as low as 400 ppb. The sensitivity of the N-rGO sensor to 1000 ppb NO (1.7) is much better than that of the rGO sensor (0.012). Compared with pure rGO, N-rGO exhibited a higher sensitivity and excellent reproducibility.


NANO ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. 2050149
Author(s):  
Xiangyu Shi ◽  
Jifei Liu ◽  
Jianfeng Dai ◽  
Yufeng Qi

Silicon carbon nanoparticles (SCNPs) coated with reduced graphene oxide (rGO) were fabricated by a hydrothermal method and subsequently by a simple heat treatment process. SCNPs/rGO exhibit excellent electrochemical performance which not only attributes the rGO layer to inhibit the volumetric expansion of silicon and reduce the impedance between the active material and lithium ions during the electrochemical process, but also improves the electrical conductivity of SCNPs/rGO. The as-prepared compound was cyclically tested at a current density of 150[Formula: see text]mA/g, with the first charge and discharge capacities of 3152.2[Formula: see text]mAh/g and 3342.7[Formula: see text]mAh/g, respectively. Moreover, the electrochemical performance of SCNPs/rGO was better than SCNPs. The [Formula: see text] values for fresh battery, after 1 cycle and 100 cycles, are 120.9[Formula: see text][Formula: see text], 120.5[Formula: see text][Formula: see text] and 104[Formula: see text][Formula: see text]. Thus, compared with SCNPs, SCNPs/rGO exhibited lower overall impedance values. These results indicate that the addition of graphene layer significantly improved the electrochemical performance of SCNPs electrodes and reduced the internal resistance of the battery.


Sign in / Sign up

Export Citation Format

Share Document