Electrodeposition of CuI Thin Film for Perovskite Solar Cells

2020 ◽  
Vol 979 ◽  
pp. 180-184
Author(s):  
I. Karuppusamy ◽  
K. Ramachandran ◽  
S. Karuppuchamy

The CuI thin film has been successfully prepared by using cathodic electrodeposition method. The synthesized film was characterized using advanced techniques such as XRD, SEM-EDX and UV measurements. The films are crystallized in face centered cubic structure. The crystallinity is increasing for the applied potential of-0.3 V and the crystallinity deteriorates on increasing the potential above - 0.3 V. It was also observed that the applied voltage plays an important role. Homogeneously distributed triangular faceted morphology was observed from SEM. This is consistent with the result of XRD that electrodeposited CuI thin films grow preferential orientation along the (111) crystal plane.

Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 647 ◽  
Author(s):  
Yujun Yao ◽  
Xiaoping Zou ◽  
Jin Cheng ◽  
Tao Ling ◽  
Chuangchuang Chang ◽  
...  

Traditional hetero-junction perovskite solar cells are composed of light-absorbing layers, charge carrier-transporting layers, and electrodes. Recently, a few papers on homo-junction perovskite solar cells have been studied. Here, we studied the effect of K+ doping on TiO2/PbI2 interface quality, perovskite film morphology, photo-physical properties, and majority carrier type. In particular, the K+ extrinsic doping can modulate the majority carrier type of the perovskite thin film. The study indicated that the interface between the perovskite layer and the TiO2 layer deteriorates with the increase of K+ doping concentration, affecting the electron transport ability from the perovskite film to the TiO2 layer and the photo-physical properties of the perovskite layer by K+ doping. In addition, the majority charge carrier type of perovskite thin films can be changed from n-type to p-type after K+ extrinsic doping, and the corresponding hole concentration increased to 1012 cm−3. This approach of modulating the majority charge carrier type of perovskite thin film will pave the way for the investigation of perovskite homo-junction by extrinsic doping for solar cells.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 627
Author(s):  
Ponmudi Selvan Thiruchelvan ◽  
Chien-Chih Lai ◽  
Chih-Hung Tsai

Combustion processed nickel oxide (NiOx) thin film is considered as an alternative to the sol-gel processed hole transport layer for perovskite solar cells (PSCs). In this paper, NiOx thin film was prepared by the solution–combustion process at 250 °C, a temperature lower than the actual reaction temperature. Furthermore, the properties of the NiOx hole transport layer (HTL) in PSCs were enhanced by the incorporation of zinc (Zn) in NiOx thin films. X-ray diffraction and X-ray photoelectron spectroscopy results revealed that the formation of NiOx was achieved at lower annealing temperature, which confirms the process of the combustion reaction. The electrical conductivity was greatly improved with Zn doping into the NiOx crystal lattice. Better photoluminescence (PL) quenching, and low PL lifetime decay were responsible for better charge separation in 5% Zn doped NiOx, which results in improved device performance of PSCs. The maximum power conversion efficiency of inverted PSCs made with pristine NiOx and 5% Zn-NiOx as the HTL was 13.62% and 14.87%, respectively. Both the devices exhibited better stability than the PEDOT:PSS (control) device in an ambient condition.


2021 ◽  
Author(s):  
Huabin Lan ◽  
Xingye Chen ◽  
Ping Fan ◽  
Guangxing Liang

Abstract All inorganic lead-free halide perovskites have attracted much attention due to their non-toxic and good band gap. In this paper, we first prepared all inorganic lead-free perovskite CsBi3I10 thin films by single source thermal evaporation deposition. The results show that CsBi3I10 thin films prepared by single source thermal evaporation have layered structure, high purity hexagonal phase and high crystallinity, which are consistent with the theoretical calculation results. The surface of the thin film was compact and uniform, and had high homology with the crystal structure of the evaporation source material. After annealing, the crystallinity of the film was further improved. The band gap of the CsBi3I10 thin film calculated was 1.83 eV, Perovskite solar cells based on CsBi3I10 thin films exhibit an efficiency of up to 0.84%. These results indicate that the proposed single source thermal evaporation method has the potential to prepare high efficiency inorganic lead-free perovskite solar cells.


2007 ◽  
Vol 561-565 ◽  
pp. 1201-1204
Author(s):  
Ji Cheng Zhou ◽  
Jian Wu Yan

The nano Ni-Cr thin-film samples with different composition have been fabricated by a double-target magnetron co-sputtering equipment, through controlling the sputtering power, the substrate rotate speed, and the substrate temperature, The results showed that the grains sizes with polycrystalline microstructure were not greater than 10 nm. The crystal microstructure of Ni-Cr thin-films is Face Centered Cubic (FCC). The dominant texture in the Ni-Cr film was Ni (111) under this sputtering condition. The lattice parameters of Ni crystal and the inter-planar distances of Ni (111) increased by Cr solid-soluble in Ni crystal. The surface morphology of the thin-film samples is smooth and compact. The TCR (temperature coefficient of resistance) value of specimen 3 was 84~130 ppm/k, which show the specimen 3 was the most stable.


1992 ◽  
Vol 247 ◽  
Author(s):  
K. Tanigaki ◽  
T. Ichihsdhi ◽  
T. W. Ebbesen ◽  
S. Kuroshima ◽  
S. Iijima ◽  
...  

ABSTRACTThe C60/C70 thin film crystals have been fabricated on the (001) surface of alkali halide substrates, KC1, KBr, and NaCl, and their structures have been studied. The crystal structure analyses by TEM show that the hexagonal closed packing (hep) with lattice parameters of a=10.0 Å and c=16.3 Å and the face-centered cubic (fee) with a=14.2 Å coexist in the C60 thin film crystals. The C70 thin film crystals show an expanded lattice constant of a=10.5 Å from the view perpendicular to the stacking plane. The ratio of hep to fee is dependent on the kind of the substrates and on the substrate temperatures during the crystal growth. The observed reversible change in the Raman spectrum of the C60 thin films implies a rotational molecular motion in the thin film crystals.


Author(s):  
Karimat El-Sayed

Lead telluride is an important semiconductor of many applications. Many Investigators showed that there are anamolous descripancies in most of the electrophysical properties of PbTe polycrystalline thin films on annealing. X-Ray and electron diffraction studies are being undertaken in the present work in order to explain the cause of this anamolous behaviour.Figures 1-3 show the electron diffraction of the unheated, heated in air at 100°C and heated in air at 250°C respectively of a 300°A polycrystalline PbTe thin film. It can be seen that Fig. 1 is a typical [100] projection of a face centered cubic with unmixed (hkl) indices. Fig. 2 shows the appearance of faint superlattice reflections having mixed (hkl) indices. Fig. 3 shows the disappearance of thf superlattice reflections and the appearance of polycrystalline PbO phase superimposed on the [l00] PbTe diffraction patterns. The mechanism of this three stage process can be explained on structural basis as follows :


Nanoscale ◽  
2019 ◽  
Vol 11 (45) ◽  
pp. 21824-21833 ◽  
Author(s):  
Jyoti V. Patil ◽  
Sawanta S. Mali ◽  
Chang Kook Hong

Controlling the grain size of the organic–inorganic perovskite thin films using thiourea additives now crossing 2 μm size with >20% power conversion efficiency.


Alloy Digest ◽  
1993 ◽  
Vol 42 (5) ◽  

Abstract NICROFER 5923 hMo, often called Alloy 59, was developed with extra low carbon and silicon contents and with a high alloy level of molybdenum to optimize its corrosion resistance. Nicrofer 5923hMo has a face-centered cubic structure. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance as well as forming, heat treating, and joining. Filing Code: Ni-430. Producer or source: VDM Technologies Corporation.


Author(s):  
K. Ramachandran ◽  
C. Jeganathan ◽  
R. Prabhakaran ◽  
M. Wakisaka ◽  
G. Paruthimal Kalaignan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document