scholarly journals Few-walled carbon nanotube-enhanced activated carbon supercapacitor performance in organic electrolyte at 4 V

RSC Advances ◽  
2019 ◽  
Vol 9 (33) ◽  
pp. 18863-18867
Author(s):  
Jie Li ◽  
Zhou Xu

The addition of 1 wt% few-walled carbon nanotubes increases the energy density of an activated carbon-based supercapacitor at 4 V.

2010 ◽  
Vol 24 (23) ◽  
pp. 2403-2412 ◽  
Author(s):  
XIAO-HUA ZHOU

The shapes of DNA, carbon nanotube (CNT) and vesicle are determined by the minimum of their elastic energy. Two central results about the low-dimensional elastic structure are reported here. Firstly, if the energy density of a one-dimensional structure is only related to its curvature, we generally find that a helix solution with the helix angle θ = ±π/4 will have zero total energy. Secondly, with the fixed length and radii, the helical multi-walled carbon nanotubes (MWNTs) and DNA will have the lowest energy when the helix angle θ = ±π/3.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Gopal Krishna Gupta ◽  
Pinky Sagar ◽  
Sumit Kumar Pandey ◽  
Monika Srivastava ◽  
A. K. Singh ◽  
...  

AbstractHerein, we demonstrate the fabrication of highly capacitive activated carbon (AC) using a bio-waste Kusha grass (Desmostachya bipinnata), by employing a chemical process followed by activation through KOH. The as-synthesized few-layered activated carbon has been confirmed through X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy techniques. The chemical environment of the as-prepared sample has been accessed through FTIR and UV–visible spectroscopy. The surface area and porosity of the as-synthesized material have been accessed through the Brunauer–Emmett–Teller method. All the electrochemical measurements have been performed through cyclic voltammetry and galvanometric charging/discharging (GCD) method, but primarily, we focus on GCD due to the accuracy of the technique. Moreover, the as-synthesized AC material shows a maximum specific capacitance as 218 F g−1 in the potential window ranging from − 0.35 to + 0.45 V. Also, the AC exhibits an excellent energy density of ~ 19.3 Wh kg−1 and power density of ~ 277.92 W kg−1, respectively, in the same operating potential window. It has also shown very good capacitance retention capability even after 5000th cycles. The fabricated supercapacitor shows a good energy density and power density, respectively, and good retention in capacitance at remarkably higher charging/discharging rates with excellent cycling stability. Henceforth, bio-waste Kusha grass-derived activated carbon (DP-AC) shows good promise and can be applied in supercapacitor applications due to its outstanding electrochemical properties. Herein, we envision that our results illustrate a simple and innovative approach to synthesize a bio-waste Kusha grass-derived activated carbon (DP-AC) as an emerging supercapacitor electrode material and widen its practical application in electrochemical energy storage fields.


2013 ◽  
Vol 716 ◽  
pp. 373-378
Author(s):  
Qian Zhang ◽  
Xin Bao Gao ◽  
Tian Peng Li

Carbon nanotube/expanded graphite composite material was prepared by expanding the mixture of multi-walled carbon nanotubes and expansible graphite under the condition of high temperature. The microstructure and composition was studied by using SEM and XRD. The study shows that the tubular structure of carbon nanotubes in the composite material is changed by high temperature expanding process, and the microstructure is different with different expanding temperature. When the expanding temperature was 900°C, carbon nanotubes transformed, then attached to the surface of expanded graphite flake, so carbon nanotubes and expanding graphite combined strongly; globular carbon nanotubes attached to the surface of expanded graphite flake at the temperature of 700°C, both were combined much more strongly; carbon nanotubes retained the tube structure at the temperature of 500°C, combination was looser due to the simple physical adsorption. The result shows that the choice of expanding temperature has an important effect on microstructure of carbon nanotube/expanded graphite composite material.


Author(s):  
Cristian Andrei Gal ◽  
Laura Edit Barabas ◽  
Judith Hajnal Bartha-Vari ◽  
Madalina Elena Moisa ◽  
Diana Balogh-Weiser ◽  
...  

An efficient nanobioconjugate of lipase B from Candida antarctica was prepared by the covalent binding on carboxy-functionalized single-walled carbon nanotubes and tested in batch and flow mode for the enzymatic...


Sign in / Sign up

Export Citation Format

Share Document