scholarly journals Magnetically retrievable Ce-doped Fe3O4 nanoparticles as scaffolds for the removal of azo dyes

RSC Advances ◽  
2019 ◽  
Vol 9 (40) ◽  
pp. 23129-23141 ◽  
Author(s):  
Aashima Aashima ◽  
Shivani Uppal ◽  
Arushi Arora ◽  
Sanjeev Gautam ◽  
Suman Singh ◽  
...  

Considering the significant impact of magnetically retrievable nanostructures, herein, Ce-doped Fe3O4 nanoparticles were employed as scaffolds for the removal of the Reactive Black 5 (RB5), an azo dye.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Marco S. Lucas ◽  
Manuel Algarra ◽  
José Jiménez-Jiménez ◽  
Enrique Rodríguez-Castellón ◽  
José A. Peres

Fenton’s reaction is often used to decompose stable substances in wastewater. In this study, experiments based on the effect of porous phosphate heterostructures as catalyst sorbent of Fe2+synthesised by different procedures were planned. The examined PPH-Fe/H2O2as oxidant in a heterogeneous process under mild conditions at pH 5 was found to be very efficient for discoloration of a simulated wastewater containing 50 mg L−1of a commercial azo dye (Reactive Black 5) reaching 95% of decolourization. Under the described conditions total visual decolourization was achieved after 360 min. This study can provide a simple, effective, and economic system ideal for the treatment of toxic and nonbiodegradable azo dyes.


2021 ◽  
Author(s):  
Nain Tara ◽  
Mazhar Iqbal ◽  
Fazale Habib ◽  
Qaiser Mahmood Khan ◽  
Samina Iqbal ◽  
...  

Abstract The direct discharge of azo dyes and/or their metabolites into the environment may exert toxic, mutagenic, and carcinogenic effects on exposed fauna and flora. In this study, we analyzed the metabolites produced during the degradation of an azo dye namely Reactive Black 5 (RB5) in the bacterial augmented-floating treatment wetlands (FTWs), followed by the investigation of their underlying toxicity. To this end, a FTWs system was developed by using a common wetland plant Phragmites australis in the presence of three dye-degrading bacteria (Acinetobacter junii strain NT-15, Pseudomonas indoloxydans strain NT-38, and Rhodococcus sp. strain NT-39). We found that the FTW system effectively degraded RB5 into at least 20 different metabolites with the successful removal of color (95.5%) from the water. The fish toxicity assay revealed the non-toxic characteristics of the metabolites produced after dye degradation. Our study suggests that bacterially aided FTWs could be a suitable option for the successful degradation of azo dyes, and the results presented in this study may help improve the overall textile effluent clean-up processes.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4802 ◽  
Author(s):  
Khadeeja Rehman ◽  
Tanvir Shahzad ◽  
Amna Sahar ◽  
Sabir Hussain ◽  
Faisal Mahmood ◽  
...  

Azo dyes are one of the largest classes of synthetic dyes being used in textile industries. It has been reported that 15–50% of these dyes find their way into wastewater that is often used for irrigation purpose in developing countries. The effect of azo dyes contamination on soil nitrogen (N) has been studied previously. However, how does the azo dye contamination affect soil carbon (C) cycling is unknown. Therefore, we assessed the effect of azo dye contamination (Reactive Black 5, 30 mg kg−1 dry soil), bacteria that decolorize this dye and dye + bacteria in the presence or absence of maize leaf litter on soil respiration, soil inorganic N and microbial biomass. We found that dye contamination did not induce any change in soil respiration, soil microbial biomass or soil inorganic N availability (P > 0.05). Litter evidently increased soil respiration. Our study concludes that the Reactive Black 5 azo dye (applied in low amount, i.e., 30 mg kg−1 dry soil) contamination did not modify organic matter decomposition, N mineralization and microbial biomass in a silty loam soil.


2019 ◽  
Vol 16 (2) ◽  
pp. 156-164 ◽  
Author(s):  
Nadine Ana de Souza ◽  
Nagappa Ramaiah ◽  
Samir Damare ◽  
Bliss Furtado ◽  
Chellandi Mohandass ◽  
...  

Background:Microbial remediation is an ecologically safe alternative to controlling environmental pollution caused by toxic aromatic compounds including azo dyes. Marine bacteria show excellent potential as agents of bioremediation. However, a lack of understanding of the entailing mechanisms of microbial degradation often restricts its wide-scale and effective application.Objective:To understand the changes in a bacterial proteome profile during azo dye decolorization.Methods:In this study, we tested a Gram-negative bacterium, Shewanella seohaensis NIODMS14 isolated from an estuarine environment and grown in three different azo dyes (Reactive Black 5 (RB5), Reactive Green 19 (RG19) and Reactive Red 120 (RR120)). The unlabeled bacterial protein samples extracted during the process of dye decolorization were subject to mass spectrometry. Relative protein quantification was determined by comparing the resultant MS/MS spectra for each protein.Results:Maximum dye decolorization of 98.31% for RB5, 91.49% for RG19 and 97.07% for RR120 at a concentration of 100 mg L-1 was observed. The liquid chromatography-mass spectrometry - Quadrupole Time of Flight (LCMS-QToF) analysis revealed that as many as 29 proteins were up-regulated by 7 hours of growth and 17 by 24 hours of growth. Notably, these were common across the decolorized solutions of all three azo dyes. In cultures challenged with the azo dyes, the major class of upregulated proteins was cellular oxidoreductases and an alkyl hydroperoxide reductase (SwissProt ID: A9KY42).Conclusion:The findings of this study on the bacterial proteome profiling during the azo dye decolorization process are used to highlight the up-regulation of important proteins that are involved in energy metabolism and oxido-reduction pathways. This has important implications in understanding the mechanism of azo dye decolorization by Shewanella seohaensis.


2000 ◽  
Vol 42 (5-6) ◽  
pp. 329-336 ◽  
Author(s):  
M. Quezada ◽  
I. Linares ◽  
G. Buitrón

The degradation of azo dyes in an aerobic biofilter operated in an SBR system was studied. The azo dyes studied were Acid Red 151 and a textile effluent containing basic dyes (Basic Blue 41, Basic Red 46 and 16 and Basic Yellow 28 and 19). In the case of Acid Red 151 a maximal substrate degradation rate of 288 mg AR 151/lliquid·d was obtained and degradation efficiencies were between 60 and 99%. Mineralization studies showed that 73% (as carbon) of the initial azo dye was transformed to CO2 by the consortia. The textile effluent was efficiently biodegraded by the reactor. A maximal removal rate of 2.3 kg COD/lliquid·d was obtained with removal efficiencies (as COD) varying from 76 to 97%. In all the cycles the system presented 80% of colour removal.


2011 ◽  
Vol 181-182 ◽  
pp. 257-260
Author(s):  
David Statman ◽  
Andrew Jockers ◽  
Daniel Brennan

Chiral nematic liquid crystals prepared with Grandjean texture demonstrate a photonic bandgap whose central wavelength is proportional to the pitch length, P, of the liquid crystal and whose width is given by (ne – no)P. We show that methyl red doped chiral nematics undergo a shift in the photonic bandgap upon photo-isomerization. This shift is a result of (1) photo-induced change in anchoring energy on the nematic surface, and (2) change in the natural pitch length from the photo-isomerization of the azo dye.


1997 ◽  
Vol 36 (6-7) ◽  
pp. 65-72 ◽  
Author(s):  
Elías Razo-Flores ◽  
Maurice Luijten ◽  
Brian Donlon ◽  
Gatze Lettinga ◽  
Jim Field

Biological treatment of wastewaters discharged by the textile industry could potentially be problematic due to the high toxicity and recalcitrance of the commonly-used azo dye compounds. In the present report, the fate of two azo dyes under methanogenic conditions was studied. Mordant Orange 1 (MO1) and Azodisalicylate (ADS) were completely reduced and decolorised in continuous UASB reactors in the presence of cosubstrates. In the MO1 reactor, both 5-aminosalicylic acid (5-ASA) and 1,4-phenylenediamine were identified as products of azo cleavage. After long adaptation periods, 5-ASA was detected at trace levels, indicating further mineralization. ADS, a pharmaceutical azo dye constructed from two 5-ASA units, was completely mineralized even in the absence of cosubstrate, indicating that the metabolism of 5-ASA could provide the reducing equivalents needed for the azo reduction. Batch experiments confirmed the ADS mineralization. These results demonstrate that some azo dyes could serve as a carbon, energy, and nitrogen source for anaerobic bacteria.


Chemosphere ◽  
2003 ◽  
Vol 52 (6) ◽  
pp. 1069-1077 ◽  
Author(s):  
A. Mohey El-Dein ◽  
J.A. Libra ◽  
U. Wiesmann

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Siddhesh Umesh Mestry ◽  
Umesh Ratan Mahajan ◽  
Aswathy M. ◽  
Shashank T. Mhaske

Purpose The purpose of this paper is to use the bio-based resource as the starting material for the synthesis of azo dye. Cardanol is one of the most used bio-based resources for carrying out the synthesis of various compounds having numerous end applications. The study presents an attempt to develop an azo dye from Cardanol having end applications in pH-responsive dyes. Design/methodology/approach The cardanol was sulfonated to block the para position by which ortho positioned hydroxyl group after diazotization and coupling will provide necessary pH-sensitivity. The diazotization of two naphthalene derivatives, i.e. 1-naphthol-8-amino-3,6-disulfonic acid (H-acid) and 7-amino-4-hydroxy-2-naphthalene sulfonic acid (J-acid) was carried out using the standard practice, and the diazotized compounds were coupled with the sulfonated cardanol. The obtained dyes were characterized by Fourier transform infrared, nuclear magnetic resonance, carbon-hydrogen-nitrogen-sulfur analysis and hydroxyl value. The colour properties were checked using UV-vis spectrophotometry and density functional theory, while thermogravimetric analysis was used for the thermal degradation studies of both the dyes. Findings Water-soluble cardanol-based azo dyes were prepared successfully having good thermal stability, and the obtained results are being presented in this paper. Originality/value The originality lies between the use of cardanol as a bio-based resource for the synthesis of azo-dye and the obtained azo-dye has the pH-sensitivity.


Sign in / Sign up

Export Citation Format

Share Document