Development of novel pH-sensitive azo dyes from Cardanol as a bioresource

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Siddhesh Umesh Mestry ◽  
Umesh Ratan Mahajan ◽  
Aswathy M. ◽  
Shashank T. Mhaske

Purpose The purpose of this paper is to use the bio-based resource as the starting material for the synthesis of azo dye. Cardanol is one of the most used bio-based resources for carrying out the synthesis of various compounds having numerous end applications. The study presents an attempt to develop an azo dye from Cardanol having end applications in pH-responsive dyes. Design/methodology/approach The cardanol was sulfonated to block the para position by which ortho positioned hydroxyl group after diazotization and coupling will provide necessary pH-sensitivity. The diazotization of two naphthalene derivatives, i.e. 1-naphthol-8-amino-3,6-disulfonic acid (H-acid) and 7-amino-4-hydroxy-2-naphthalene sulfonic acid (J-acid) was carried out using the standard practice, and the diazotized compounds were coupled with the sulfonated cardanol. The obtained dyes were characterized by Fourier transform infrared, nuclear magnetic resonance, carbon-hydrogen-nitrogen-sulfur analysis and hydroxyl value. The colour properties were checked using UV-vis spectrophotometry and density functional theory, while thermogravimetric analysis was used for the thermal degradation studies of both the dyes. Findings Water-soluble cardanol-based azo dyes were prepared successfully having good thermal stability, and the obtained results are being presented in this paper. Originality/value The originality lies between the use of cardanol as a bio-based resource for the synthesis of azo-dye and the obtained azo-dye has the pH-sensitivity.

2004 ◽  
Vol 823 ◽  
Author(s):  
Jun Feng ◽  
Yong-Hyun Kim ◽  
S. B. Zhang ◽  
Shi-You Ding ◽  
Melvin P. Tucker ◽  
...  

AbstractChemical action between cyclodextrins (CDs) and TOPO-(CdSe)ZnS quantum dots (QDs) generates a water-soluble solution of CD-QDs. Hydrophobic TOPO molecules on surface of the QDs are compatible to thread through the pockets of CDs and make the hydroxyl group on end of CDs to approach the ZnS surface, and then cause the interaction between ZnS and the hydroxyls. In this paper, Photoluminescence of the γ-CD-QD solution appeared about 15 nm of red movement compared with that of the QDs in hexane; 58% replacement of the crystal coordinate bond of Zn-S with that of Zn-O in the ZnS shell was demonstrated by using first-principles density functional theory and the red shift of the photoluminescence of CD-QDs; and –0.11eV of the energy gain of the exchange model was calculated by using an effective mass (EM) model. CD-QDs will provide water-soluble QDs with conjugational group for biology and molecule-device applications.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nidhi Goyal ◽  
Deepali Rastogi ◽  
Manjeet Jassal ◽  
Ashwini K. Agrawal

Purpose Dyeing and printing are important steps in textile manufacturing. After the process completion, these dyes are released in the effluent. These dyes impart an unacceptable appearance but are also toxic to the soil and water bodies. The present research has been carried out to study the rate of photocatalytic degradation of an azo dye, namely, CI Direct Green 26, using titania nanoparticles under ultra violet (UV) irradiation as a function of temperature and time. Azo dyes account for the majority of all dyestuffs are produced and extensively used in the textile, paper, food, leather, cosmetics and pharmaceutical industries. Titania nanoparticles have been found to successfully degrade these dyes in the presence of UV light. The purpose of the present paper was to study the photodegradation of azo dyes using titania nanoparticles at different temperatures and time periods. Design/methodology/approach Titania nanoparticle concentration of 0.1% (w/v) was dispersed in distilled water by sonication for 1 h in sonication bath. The of rate of degradation of Direct Green 26 dye in the titania nanoparticle dispersion, under UV-A exposure was studied at different temperatures ranging from 25°C to 65 °C for time periods ranging from 1 h to 6 h. Photocatalytic degradation tests were performed in a specially designed UV reactor chamber. Raman spectroscopy of Titania nanoparticles, dye and titania/dye mixture before and after UV exposure was carried out using Confocal Laser Dispersion Raman Microscope (Renishaw, UK) with 785 nm excitation laser. Findings Titanium dioxide is an efficient photocatalyst for decolourisation of direct dye. The photodegradation of the direct Green dye was found to follow the pseudo first-order reaction. The Arrhenius activation energy was found to be 24.8 kJ/mol with A value of 0.0013 for the photocatalytic degradation of the dye. Raman spectroscopy also confirmed the adsorption of dye on titania nanoparticle and its complete degradation on exposure to UV light. Practical implications This research highlights the application of titania nanoparticles for the effective degradation of dye in the effluent from textiles, clothing, paper and any kind of dyeing process. Azo dyes account for the majority of all dyestuffs are produced and extensively used in the textile, paper, food, leather, cosmetics and pharmaceutical industries. Titania nanoparticles have been found to successfully degrade these dyes in the presence of UV light which can be very beneficial for the effluent treatment plants in textile and other industries. Originality/value Azo dyes are one of the harmful pollutants released in textile waste water. The degradation and removal of the coloured waste in the textile effluent is an important environmental concern and needs to be investigated. The research is one of the first to investigate and understand the mechanism of the degradation of an azo dye in the presence of titania nanoparticles by Raman spectroscopy.


2019 ◽  
Vol 8 (49) ◽  
Author(s):  
Ivette Fuentes ◽  
Robert Ccorahua ◽  
Oscar Tinoco ◽  
Oscar León ◽  
Pablo Ramírez

Here, we report the annotated genome sequences of two Shewanella sp. strains isolated from textile industry wastewater effluent in Peru. Potential genes for encoding enzymes that enable the strain to decolorize and degrade textile azo dyes were detected in both genomes.


2000 ◽  
Vol 42 (5-6) ◽  
pp. 329-336 ◽  
Author(s):  
M. Quezada ◽  
I. Linares ◽  
G. Buitrón

The degradation of azo dyes in an aerobic biofilter operated in an SBR system was studied. The azo dyes studied were Acid Red 151 and a textile effluent containing basic dyes (Basic Blue 41, Basic Red 46 and 16 and Basic Yellow 28 and 19). In the case of Acid Red 151 a maximal substrate degradation rate of 288 mg AR 151/lliquid·d was obtained and degradation efficiencies were between 60 and 99%. Mineralization studies showed that 73% (as carbon) of the initial azo dye was transformed to CO2 by the consortia. The textile effluent was efficiently biodegraded by the reactor. A maximal removal rate of 2.3 kg COD/lliquid·d was obtained with removal efficiencies (as COD) varying from 76 to 97%. In all the cycles the system presented 80% of colour removal.


1995 ◽  
Vol 60 (9) ◽  
pp. 1448-1456 ◽  
Author(s):  
Ivo Šafařík ◽  
Miroslava Šafaříková ◽  
Vlasta Buřičová

Magnetic composite based on poly(oxy-2,6-dimethyl-1,4-phenylene) (PODMP) was prepared by melting the polymer with ε-caprolactam in a presence of fine magnetite particles. Magnetic PODMP was used for sorption of water soluble organic compounds (dyes belonging to triphenylmethane, heteropolycyclic and azo dye groups) from water solutions. There were considerable differences in the binding of the dyes tested. In general, heteropolycyclic dyes exhibited the lowest sorption.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 117
Author(s):  
Yousef Hijji ◽  
Rajeesha Rajan ◽  
Hamdi Ben Yahia ◽  
Said Mansour ◽  
Abdelkader Zarrouk ◽  
...  

The(3R,4R,6R)-3-(((E)-2-hydroxybenzylidene)amino)-6-(hydroxymethyl)tetrahydro-2H-pyran-2,4,5-triol water-soluble Glucose amine Schiff base (GASB-1) product was made available by condensation of 2-hydroxybenzaldehyde with (3R,6R)-3-amino-6-(hydroxymethyl)-tetra-hydro-2H-pyran-2,4,5-triol under mono-mode microwave heating. A one-pot 5-minute microwave-assisted reaction was required to complete the condensation reaction with 90% yield and without having byproducts. The 3D structure of GASB-1 was solved from single crystal X-ray diffraction data and computed by DFT/6-311G(d,p). The Hirshfeld surface analysis (HSA), molecular electronic potential (MEP), Mulliken atomic charge (MAC), and natural population analysis (NPA) were performed. The IR and UV-Vis spectra were matched to their density functional theory (DFT) relatives and the thermal behavior was resolved in an open-room condition via thermogravimetry/Derivative thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC). The highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO), density of state (DOS), and time-dependence TD-DFT computations were correlated to the experimental electron transfer in water and acrylonitrile solvents.


2020 ◽  
Vol 35 (2) ◽  
pp. 129-135
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of atazanavir has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Atazanavir crystallizes in space group P21 (#4) with a = 15.33545(7), b = 5.90396(3), c = 21.56949(13) Å, β = 96.2923(4)°, V = 1941.134(11) Å3, and Z = 2. Despite being labeled as “atazanavir sulfate”, the commercial reagent sample consisted of atazanavir free base. The structure consists of an array of extended-conformation molecules parallel to the ac-plane. Although the atazanavir molecule contains only four classical hydrogen bond donors, hydrogen bonding is, surprisingly, important to the crystal energy. Both intra- and intermolecular hydrogen bonds are significant. The hydroxyl group forms bifurcated intramolecular hydrogen bonds to a carbonyl oxygen atom and an amide nitrogen. Several amide nitrogens act as donors to the hydroxyl group and carbonyl oxygen atoms. An amide nitrogen acts as a donor to another amide nitrogen. Several methyl, methylene, methyne, and phenyl hydrogens participate in hydrogen bonds to carbonyl oxygens, an amide nitrogen, and the pyridine nitrogen. The powder pattern is included in the Powder Diffraction File™ as entry 00-065-1426.


2019 ◽  
Vol 34 (1) ◽  
pp. 50-58
Author(s):  
James A. Kaduk ◽  
Nicholas C. Boaz ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of oxybutynin hydrochloride hemihydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Oxybutynin hydrochloride hemihydrate crystallizes in space group I2/a (#15) with a = 14.57266(8), b = 8.18550(6), c = 37.16842(26) Å, β = 91.8708(4)°, V = 4421.25(7) Å3, and Z = 8. The compound exhibits X-ray-induced photoreduction of the triple bond. Prominent in the layered crystal structure is the N–H⋅⋅⋅Cl hydrogen bond between the cation and anion, as well as O–H⋅⋅⋅Cl hydrogen bonds from the water molecule and hydroxyl group of the oxybutynin cation. C–H⋅⋅⋅Cl hydrogen bonds also contribute to the crystal energy, and help determine the conformation of the cation. The powder pattern is included in the Powder Diffraction File™ as entry 00-068-1305.


2011 ◽  
Vol 77 (9) ◽  
pp. 3023-3034 ◽  
Author(s):  
Ya-Jie Tang ◽  
Wei Zhao ◽  
Hong-Mei Li

ABSTRACTAccording to the structure of podophyllotoxin and its structure-function relationship, a novel tandem biotransformation process was developed for the directional modification of the podophyllotoxin structure to directionally synthesize a novel compound, 4-(2,3,5,6-tetramethylpyrazine-1)-4′-demethylepipodophyllotoxin (4-TMP-DMEP). In this novel tandem biotransformation process, the starting substrate of podophyllotoxin was biotransformed into 4′-demethylepipodophyllotoxin (product 1) with the demethylation of the methoxyl group at the 4′ position byGibberella fujikuroiSH-f13, which was screened out from Shennongjia prime forest humus soil (Hubei, China). 4′-Demethylepipodophyllotoxin (product 1) was then biotransformed into 4′-demethylpodophyllotoxone (product 2) with the oxidation of the hydroxyl group at the 4 position byAlternaria alternataS-f6, which was screened out from the gatheredDysosma versipellisplants in the Wuhan Botanical Garden, Chinese Academy of Sciences. Finally, 4′-demethylpodophyllotoxone (product 2) and ligustrazine were linked with a transamination reaction to synthesize the target product 4-TMP-DMEP (product 3) byAlternaria alternataS-f6. Compared with podophyllotoxin (i.e., a 50% effective concentration [EC50] of 529 μM), the EC50of 4-TMP-DMEP against the tumor cell line BGC-823 (i.e., 0.11 μM) was significantly reduced by 5,199 times. Simultaneously, the EC50of 4-TMP-DMEP against the normal human proximal tubular epithelial cell line HK-2 (i.e., 0.40 μM) was 66 times higher than that of podophyllotoxin (i.e., 0.006 μM). Furthermore, compared with podophyllotoxin (i.e., logP= 0.34), the water solubility of 4-TMP-DMEP (i.e., logP= 0.66) was significantly enhanced by 94%. For the first time, the novel compound 4-TMP-DMEP with superior antitumor activity was directionally synthesized from podophyllotoxin by the novel tandem biotransformation process developed in this work.


2011 ◽  
Vol 181-182 ◽  
pp. 257-260
Author(s):  
David Statman ◽  
Andrew Jockers ◽  
Daniel Brennan

Chiral nematic liquid crystals prepared with Grandjean texture demonstrate a photonic bandgap whose central wavelength is proportional to the pitch length, P, of the liquid crystal and whose width is given by (ne – no)P. We show that methyl red doped chiral nematics undergo a shift in the photonic bandgap upon photo-isomerization. This shift is a result of (1) photo-induced change in anchoring energy on the nematic surface, and (2) change in the natural pitch length from the photo-isomerization of the azo dye.


Sign in / Sign up

Export Citation Format

Share Document