scholarly journals Correction: Direct chemical vapor deposition synthesis of large area single-layer brominated graphene

RSC Advances ◽  
2019 ◽  
Vol 9 (28) ◽  
pp. 16057-16057
Author(s):  
Maria Hasan ◽  
Wang Meiou ◽  
Liu Yulian ◽  
Sami Ullah ◽  
Huy Q. Ta ◽  
...  

Correction for ‘Direct chemical vapor deposition synthesis of large area single-layer brominated graphene’ by Maria Hasan et al., RSC Adv., 2019, 9, 13527–13532.

ACS Nano ◽  
2014 ◽  
Vol 8 (5) ◽  
pp. 4961-4968 ◽  
Author(s):  
Woanseo Park ◽  
Jaeyoon Baik ◽  
Tae-Young Kim ◽  
Kyungjune Cho ◽  
Woong-Ki Hong ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (24) ◽  
pp. 13527-13532
Author(s):  
Maria Hasan ◽  
Wang Meiou ◽  
Liu Yulian ◽  
Sami Ullah ◽  
Huy Q. Ta ◽  
...  

In this study we present the first direct synthesis of large area, single layer, crystalline graphene with covalently doped bromine.


2013 ◽  
Vol 27 (10) ◽  
pp. 1341002 ◽  
Author(s):  
TING FUNG CHUNG ◽  
TIAN SHEN ◽  
HELIN CAO ◽  
LUIS A. JAUREGUI ◽  
WEI WU ◽  
...  

The discovery of graphene, a single layer of covalently bonded carbon atoms, has attracted intense interest. Initial studies using mechanically exfoliated graphene unveiled its remarkable electronic, mechanical and thermal properties. There has been a growing need and rapid development in large-area deposition of graphene film and its applications. Chemical vapor deposition on copper has emerged as one of the most promising methods in obtaining large-scale graphene films with quality comparable to exfoliated graphene. In this paper, we review the synthesis and characterizations of graphene grown on copper foil substrates by atmospheric pressure chemical vapor deposition. We also discuss potential applications of such large-scale synthetic graphene.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zhenzhen Tian ◽  
Xiaoming Yuan ◽  
Ziran Zhang ◽  
Wuao Jia ◽  
Jian Zhou ◽  
...  

AbstractGrowth of high-quality III–V nanowires at a low cost for optoelectronic and electronic applications is a long-term pursuit of research. Still, controlled synthesis of III–V nanowires using chemical vapor deposition method is challenge and lack theory guidance. Here, we show the growth of InP and GaP nanowires in a large area with a high density using a vacuum chemical vapor deposition method. It is revealed that high growth temperature is required to avoid oxide formation and increase the crystal purity of InP nanowires. Introduction of a small amount of Ga into the reactor leads to the formation of GaP nanowires instead of ternary InGaP nanowires. Thermodynamic calculation within the calculation of phase diagrams (CALPHAD) approach is applied to explain this novel growth phenomenon. Composition and driving force calculations of the solidification process demonstrate that only 1 at.% of Ga in the catalyst is enough to tune the nanowire formation from InP to GaP, since GaP nucleation shows a much larger driving force. The combined thermodynamic studies together with III–V nanowire growth studies provide an excellent example to guide the nanowire growth.


ACS Omega ◽  
2021 ◽  
Author(s):  
Muhammad Aniq Shazni Mohammad Haniff ◽  
Nur Hamizah Zainal Ariffin ◽  
Poh Choon Ooi ◽  
Mohd Farhanulhakim Mohd Razip Wee ◽  
Mohd Ambri Mohamed ◽  
...  

ACS Nano ◽  
2011 ◽  
Vol 5 (9) ◽  
pp. 7198-7204 ◽  
Author(s):  
Michael E. Ramón ◽  
Aparna Gupta ◽  
Chris Corbet ◽  
Domingo A. Ferrer ◽  
Hema C. P. Movva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document