Ion-matching porous carbons with ultra-high surface area and superior energy storage performance for supercapacitors

2019 ◽  
Vol 7 (15) ◽  
pp. 9163-9172 ◽  
Author(s):  
Lifeng Zhang ◽  
Yu Guo ◽  
Kechao Shen ◽  
Jinghao Huo ◽  
Yi Liu ◽  
...  

Polypyrrole (PPy)-derived porous carbons with an ion-matching micropore diameter exhibit ultra-high specific surface area and capacitance when used in supercapacitors.

2021 ◽  
Vol 45 (12) ◽  
pp. 5712-5719
Author(s):  
Yongxiang Zhang ◽  
Peifeng Yu ◽  
Mingtao Zheng ◽  
Yong Xiao ◽  
Hang Hu ◽  
...  

Porous carbons with a high specific surface area (2314–3470 m2 g−1) are prepared via a novel KCl-assisted activation strategy for high-performance supercapacitor.


2019 ◽  
Vol 7 (16) ◽  
pp. 9656-9664 ◽  
Author(s):  
Nadeem Hussain ◽  
Wenjuan Yang ◽  
Jianmin Dou ◽  
Yanan Chen ◽  
Yitai Qian ◽  
...  

Two-dimensional (2D) nanomaterials with a high specific surface area and mesoporous nature are attractive and have wide applications in catalysis, energy storage systems, etc.


RSC Advances ◽  
2019 ◽  
Vol 9 (14) ◽  
pp. 7833-7841 ◽  
Author(s):  
Lukai Wang ◽  
Junzong Feng ◽  
Yonggang Jiang ◽  
Liangjun Li ◽  
Jian Feng

The traditional SiO2 aerogels are difficult to apply in the fields of energy storage and heat insulation due to their poor mechanical properties.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1512
Author(s):  
Lev Matoh ◽  
Boštjan Žener ◽  
Tina Skalar ◽  
Urška Lavrenčič Štangar

Hydrothermal reactions represent a simple and efficient method for the preparation of nanostructured TiO2 particles that could be of interest as photocatalysts or catalytic supports. Although the particle size is in the range of 2–5 µm, the nanostructures composing the particles ensure a large specific surface area with values above 100 m2/g. The effects of the different synthesis parameters on the morphology, photocatalytic activity, and stability of the prepared material were studied. The surface morphology of the prepared TiO2 powders was studied by scanning electron microscopy (SEM). To further characterize the samples, the specific surface area for different morphologies was measured and the photocatalytic activity of the prepared powders was tested by degrading model pollutants under UV irradiation. The results show that the initial morphology had little effect on the photocatalytic properties. On the other hand, the final calcination temperature significantly increased the degradation rates, making it comparable to that of P25 TiO2 (particle size 20–30 nm).


2015 ◽  
Vol 820 ◽  
pp. 73-78
Author(s):  
Guilherme Luis Cordeiro ◽  
Walter Kenji Yoshito ◽  
Valter Ussui ◽  
Nelson Batista de Lima ◽  
Dolores Ribeiro Ricci Lazar

Improvements of the catalytic efficiency of nickel–aluminum oxides in reforming reactions for hydrogen production have been achieved by the development of synthesis processes that provide powders with high surface area. The reduction of the crystallization temperature is one of the procedures in this direction. In this work, the effect of solvothermal treatment on coprecipitated gels with 15 wt% nickel content in alumina matrix was evaluated. Powders were obtained by coprecipitation with and without treatment of gels under n-butanol vapor pressure at 150oC. Products were characterized by TG/DTA, X-ray diffraction, specific surface area measurements, scanning electron microscopy and laser beam scattering for granulometric distribution determination. The results showed that calcined powders have high specific surface area (ranging from 170 to 260 m2.g-1) and are composed by gamma alumina and nickel aluminate phases. Aging treatment did not promote hydroxides decomposition under solvothermal conditions, indicating the need of calcination step.


2019 ◽  
Vol 5 (2) ◽  
pp. 16 ◽  
Author(s):  
Nikolas Natter ◽  
Nikolaos Kostoglou ◽  
Christian Koczwara ◽  
Christos Tampaxis ◽  
Theodore Steriotis ◽  
...  

Several crucial problems, such as rapid population growth and extended demands for food, water and fuels, could lead to a severe lack of clean water and an energy crisis in the coming decade. Therefore, low-cost and highly-efficient technologies related to filtration of alternative water supplies (e.g., purification of wastewater and water-rich liquids) and advanced energy storage (e.g., supercapacitors) could play a crucial role to overcome such challenges. A promising class of solid materials for these purposes is exfoliated graphene, and more specifically, its nanoporous forms that exhibit large specific surface areas and pore volumes. In the current work, two plasma-exfoliated graphene-based materials with distinctive morphological and porosity features, including non-porous and low-specific surface area platelets versus nanoporous and high-specific surface area flakes, were tested as filters for water purification purposes (i.e., decolourization and deacidification) and as electrodes for supercapacitors (i.e., ion electrosorption). The findings of this study suggest that a nanoporous and large specific surface area graphene-based material promotes the water purification behaviour by removing contaminants from water-based solutions as well as the energy storage performance by confining ions of aqueous electrolytes.


2002 ◽  
Vol 17 (6) ◽  
pp. 1356-1362 ◽  
Author(s):  
L. Mädler ◽  
W. J. Stark ◽  
S. E. Pratsinis

Flame spray pyrolysis (FSP) has been used to synthesize high-surface-area ceria from cerium acetate in acetic acid solution. With the addition of an iso-octane/2-butanol mixture to that solution, homogeneous CeO2 nanoparticles were obtained. The specific surface area of the powders ranged from 240 to 101 m2/g by controlling the oxygen dispersion and liquid precursor flow rates through the flame. Furthermore, for production rates from 2 to 10 g/h a constant average primary particle size could be obtained at selected process parameters. The ceria showed high crystallinity and primary particles with a stepped surface. The powder exhibited good thermal stability and conserved up to 40% of its initial specific surface area when calcinated for 2 h at 900 °C. This shows the potential of FSP made ceria for high-temperature applications as in three-way catalysts or fuel cells.


2017 ◽  
Vol 10 (1) ◽  
pp. 370-376 ◽  
Author(s):  
Jun Zhang ◽  
Da-Wei Wang ◽  
Wei Lv ◽  
Siwei Zhang ◽  
Qinghua Liang ◽  
...  

Ether solvent is utilized to manipulate the SEI on high specific surface area carbon to enable achievement of superb sodium storage performance.


RSC Advances ◽  
2014 ◽  
Vol 4 (87) ◽  
pp. 47031-47038 ◽  
Author(s):  
Hao Cheng ◽  
Jingyu Wang ◽  
Yizhi Zhao ◽  
Xijiang Han

TiO2-based nanomaterials could reach the maximal photoactivity when designing 0D/1D heterogenous structure with appropriate phase composition and high surface area.


Sign in / Sign up

Export Citation Format

Share Document