scholarly journals Plasma-Derived Graphene-Based Materials for Water Purification and Energy Storage

2019 ◽  
Vol 5 (2) ◽  
pp. 16 ◽  
Author(s):  
Nikolas Natter ◽  
Nikolaos Kostoglou ◽  
Christian Koczwara ◽  
Christos Tampaxis ◽  
Theodore Steriotis ◽  
...  

Several crucial problems, such as rapid population growth and extended demands for food, water and fuels, could lead to a severe lack of clean water and an energy crisis in the coming decade. Therefore, low-cost and highly-efficient technologies related to filtration of alternative water supplies (e.g., purification of wastewater and water-rich liquids) and advanced energy storage (e.g., supercapacitors) could play a crucial role to overcome such challenges. A promising class of solid materials for these purposes is exfoliated graphene, and more specifically, its nanoporous forms that exhibit large specific surface areas and pore volumes. In the current work, two plasma-exfoliated graphene-based materials with distinctive morphological and porosity features, including non-porous and low-specific surface area platelets versus nanoporous and high-specific surface area flakes, were tested as filters for water purification purposes (i.e., decolourization and deacidification) and as electrodes for supercapacitors (i.e., ion electrosorption). The findings of this study suggest that a nanoporous and large specific surface area graphene-based material promotes the water purification behaviour by removing contaminants from water-based solutions as well as the energy storage performance by confining ions of aqueous electrolytes.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Renjie Zhou ◽  
Gui Chen ◽  
Yuejun Ouyang ◽  
Hairui Ni ◽  
Nonglin Zhou ◽  
...  

Using MOF-5 as a template, the porous carbon (MDPC-600) possessing high specific surface area was obtained after carbonization and acid washing. After MDPC-600 was loaded with Cu ions, the catalyst Cu/MDPC-600 was acquired by heat treatment under nitrogen atmosphere. The catalyst was characterized by X-ray powder diffraction (XRD), N2 physical adsorption (BET), field emission electron microscope (SEM), energy spectrum, and transmission electron microscope (TEM). The results show that the Cu/MDPC-600 catalyst prepared by using MOF-5 as the template has a very high specific surface area, and Cu is uniformly supported on the carrier. The catalytic hydrogen peroxide oxidation reaction of phenol hydroxylation was investigated and exhibits better catalytic activity and stability in the phenol hydroxylation reaction. The catalytic effect was best when the reaction temperature was 80°C, the reaction time was 2 h, and the amount of catalyst was 0.05 g. The conversion rate of phenol was 47.6%; the yield and selectivity of catechol were 37.8% and 79.4%, respectively. The activity of the catalyst changes little after three cycles of use.


2019 ◽  
Vol 7 (16) ◽  
pp. 9656-9664 ◽  
Author(s):  
Nadeem Hussain ◽  
Wenjuan Yang ◽  
Jianmin Dou ◽  
Yanan Chen ◽  
Yitai Qian ◽  
...  

Two-dimensional (2D) nanomaterials with a high specific surface area and mesoporous nature are attractive and have wide applications in catalysis, energy storage systems, etc.


Author(s):  
Fangzhou Wang ◽  
P. K. Kahol ◽  
Ram Gupta ◽  
Xianglin Li

Li−O2 batteries with carbon electrodes made from three commercial carbons and carbon made from waste tea leaves are investigated in this study. The waste tea leaves are recycled from household tea leaves and activated using KOH. The carbon materials have various specific surface areas, and porous structures are characterized by the N2 adsorption/desorption. Vulcan XC 72 carbon shows a higher specific surface area (264.1 m2/g) than the acetylene black (76.5 m2/g) and Super P (60.9 m2/g). The activated tea leaves have an extremely high specific surface area of 2868.4 m2/g. First, we find that the commercial carbons achieve similar discharge capacities of ∼2.50 Ah/g at 0.5 mA/cm2. The micropores in carbon materials result in a high specific surface area but cannot help to achieve higher discharge capacity because it cannot accommodate the solid discharge product (Li2O2). Mixing the acetylene black and the Vulcan XC 72 improves the discharge capacity due to the optimized porous structure. The discharge capacity increases by 42% (from 2.73 ± 0.46 to 3.88 ± 0.22 Ah/g) at 0.5 mA/cm2 when the mass fraction of Vulcan XC 72 changes from 0 to 0.3. Second, the electrode made from activated tea leaves is demonstrated for the first time in Li−O2 batteries. Mixtures of activated tea leaves and acetylene black confirm that mixtures of carbon material with different specific surface areas can increase the discharge capacity. Moreover, carbon made from recycled tea leaves can reduce the cost of the electrode, making electrodes more economically achievable. This study practically enhances the discharge capacity of Li−O2 batteries using mixed carbons and provides a method for fabricating carbon electrodes with lower cost and better environmental friendliness.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 55 ◽  
Author(s):  
Xin Yan ◽  
Guotao Ning ◽  
Peng Zhao

Hexavalent chromium Cr(VI) pollution makes has a harmful impact on human health and the ecological environment. Photocatalysis reduction technology exhibits low energy consumption, high reduction efficiency and stable performance, and is playing an increasingly important role in chromium pollution control. Graphite-phase carbon nitride has been used to reduce Cr(VI) to the less harmful Cr(III) due to its visible light catalytic activity, chemical stability and low cost. However, it has a low specific surface area and fast recombination of electron–hole pairs, which severely restrict its practical application. In this work, a TiO2-modified poly(triazine imide) (PTI) square nanotube was prepared by the one-step molten salts method. The results showed the PTI had a square hollow nanotube morphology, with an about 100–1000 nm width and 60–70 nm thickness. During the formation of the PTI square tube, TiO2 nanoparticles adhere to the surface of the square tube wall by strong adsorption, and eventually form a PTI/TiO2 heterojunction. The PTI/TiO2-7 wt% heterojunction exhibited very good Cr(VI) reduction efficiency within 120 min. The enhanced photocatalytic activity was mainly attributed to the efficient separation and transport of photo-induced electron–hole pairs and the high specific surface area in the heterojunction structure.


RSC Advances ◽  
2019 ◽  
Vol 9 (14) ◽  
pp. 7833-7841 ◽  
Author(s):  
Lukai Wang ◽  
Junzong Feng ◽  
Yonggang Jiang ◽  
Liangjun Li ◽  
Jian Feng

The traditional SiO2 aerogels are difficult to apply in the fields of energy storage and heat insulation due to their poor mechanical properties.


2010 ◽  
Vol 8 (5) ◽  
pp. 1059-1068 ◽  
Author(s):  
Tiefeng Peng ◽  
Longjun Xu ◽  
Hongchong Chen

AbstractMn3O4 powders have been produced from Electrolytic Manganese Residue (EMR). After leaching of EMR in sulfuric acid, MnSO4 solution containing various ions was obtained. Purifying the solution obtained and then adding aqueous alkali to the purified MnSO4 solution, Mn(OH)2 was prepared. Two methods were employed to produce Mn3O4. One way was oxidation of Mn(OH)2 in aqueous phase under atmosphere pressure to obtain Mn3O4. The other way was roasting Mn(OH)2 precursors in the range of 500°C to 700°C. The prepared samples were investigated by using several techniques including X-ray powder diffraction (XRD), Fourier Transformation Infra-Red (FTIR) spectra, and Brunauer-Emmett-Teller (BET) specific surface area instrument. Particle distribution and magnetic measurements were carried out on laser particle size analyzer, vibrating sample magnetometer (VSM). Through XRD, FTIR and determination of total Mn content (TMC), the products prepared were confirmed to be a single phase Mn3O4. BET specific surface areas can reach to 32 m2 g−1. The results indicated that products synthesized by aqueous solution oxidation method had higher specific surface areas and smaller particle size than those prepared by means of roasting. However the products prepared using the above two methods showed no obvious differences in magnetic property.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3429
Author(s):  
Lei Zhao ◽  
Ziwei Lan ◽  
Wenhao Mo ◽  
Junyu Su ◽  
Huazhu Liang ◽  
...  

Non-platinum carbon-based catalysts have attracted much more attention in recent years because of their low cost and outstanding performance, and are regarded as one of the most promising alternatives to precious metal catalysts. Activated carbon (AC), which has a large specific surface area (SSA), can be used as a carrier or carbon source at the same time. In this work, stable pine peel bio-based materials were used to prepare large-surface-area activated carbon and then compound with cobalt phthalocyanine (CoPc) to obtain a high-performance cobalt/nitrogen/carbon (Co-N-C) catalyst. High catalytic activity is related to increasing the number of Co particles on the large-specific-area activated carbon, which are related with the immersing effect of CoPc into the AC and the rational decomposed temperature of the CoPc ring. The synergy with N promoting the exposure of CoNx active sites is also important. The Eonset of the catalyst treated with a composite proportion of AC and CoPc of 1 to 2 at 800 °C (AC@CoPc-800-1-2) is 1.006 V, higher than the Pt/C (20 wt%) catalyst. Apart from this, compared with other AC/CoPc series catalysts and Pt/C (20 wt%) catalyst, the stability of AC/CoPc-800-1-2 is 87.8% in 0.1 M KOH after 20,000 s testing. Considering the performance and price of the catalyst in a practical application, these composite catalysts combining biomass carbon materials with phthalocyanine series could be widely used in the area of catalysts and energy storage.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3566
Author(s):  
Yawen Wang ◽  
Zahra Gohari Bajestani ◽  
Jérôme Lhoste ◽  
Sandy Auguste ◽  
Annie Hémon-Ribaud ◽  
...  

High-specific-surface-area MgF2 was prepared by microwave-assisted solvothermal synthesis. The influences of the solvent and the magnesium precursors, and the calcination atmospheres, on the nanoparticle sizes and specific surface areas, estimated by X-Ray Powder Diffraction, N2 sorption and TEM analyses, were investigated. Nanocrystallized (~7 nm) magnesium partially hydroxylated fluorides (MgF2−x(OH)x) with significant specific surface areas between 290 and 330 m2∙g−1 were obtained. After activation under gaseous HF, MgF2−x(OH)x catalysts underwent a large decrease of both their surface area and their hydroxide, rates as shown by their 19F and 1H solid-state NMR spectra. Expect for MgF2 prepared from the acetate precursor, an activity of 30–32 mmol/h∙g was obtained which was about 40% higher compared with that of MgF2 prepared using Trifluoroacetate method (21.6 mmol/h∙g).


2019 ◽  
Vol 7 (15) ◽  
pp. 9163-9172 ◽  
Author(s):  
Lifeng Zhang ◽  
Yu Guo ◽  
Kechao Shen ◽  
Jinghao Huo ◽  
Yi Liu ◽  
...  

Polypyrrole (PPy)-derived porous carbons with an ion-matching micropore diameter exhibit ultra-high specific surface area and capacitance when used in supercapacitors.


RSC Advances ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 2059-2064 ◽  
Author(s):  
Yu Zhao ◽  
Yan Ma ◽  
Ting Li ◽  
Zhishuai Dong ◽  
Yuxue Wang

Carbon felt is widely used as an anode material in microbial fuel cells (MFCs) because of its high specific surface area, low cost, good electrical conductivity, and biocompatibility.


Sign in / Sign up

Export Citation Format

Share Document