scholarly journals Heteroepitaxy of GaP on silicon for efficient and cost-effective photoelectrochemical water splitting

2019 ◽  
Vol 7 (14) ◽  
pp. 8550-8558 ◽  
Author(s):  
Mahdi Alqahtani ◽  
Sanjayan Sathasivam ◽  
Fan Cui ◽  
Ludmilla Steier ◽  
Xueming Xia ◽  
...  

Photoelectrochemical production of hydrogen by using sunlight to split water offers a sustainable approach for clean energy generation.

MRS Advances ◽  
2018 ◽  
Vol 3 (13) ◽  
pp. 697-706
Author(s):  
Hussein Alrobei ◽  
Hye Young Lee ◽  
Ashok Kumar ◽  
Manoj K. Ram

ABSTRACTRecently, photoelectrochemical (PEC) water splitting using semiconductor photoanode has received great attention due production of hydrogen through clean energy. The alpha hematite (α Fe2O3) is one of the candidate amongst photoanodic materials, which is chemically stable, abundant in nature with a band gap of 2.0-2. 2eV allowing to be harvesting in the visible light. However, it has also drawn back due to high recombination rate of electron–hole pair revealing the low concentration of charges and lower device performance. In common with α-Fe2O3, the titanium dioxide (TiO2) has been known as one of the most explored photoanode electrode material due to its physical and chemical stability in aqueous and non-toxicity. However, TiO2 has large bandgap (3.0-3.2 eV) that results in absorbing UV light and very small part of visible region. Incorporation of TiO2 in α-Fe2O3 could achieve better efficiencies as photoanode materials by enhancing the electric conductivity, limited hole diffusion length, and both materials can absorb light in both UV and visible spectrum range. However, the photoanodic properties of α-Fe2O3 with different concentrations of TiO2 are mostly unknown. Under this work, α-Fe2O3-TiO2 nanomaterial was synthesized using a hydrothermal method. The α-Fe2O3-TiO2 nanomaterials containing different weight percentage (2.5, 5, 16, 25, and 50) of TiO2 to α-Fe2O3 were characterized using SEM, XRD, UV-Vis, FTIR and Raman techniques, respectively. The electrochemical properties of α-Fe2O3-TiO2 nanomaterials were investigated by cyclic voltammetry and chronoamperometry techniques, respectively.


2018 ◽  
Vol 11 (8) ◽  
pp. 1977-1979 ◽  
Author(s):  
T. Jesper Jacobsson

The production of hydrogen from water and sunlight is a way to address the intermittency in renewable energy production, while simultaneously generating a versatile fuel and a valuable chemical feedstock. All approaches to solar hydrogen are, however, no equally promising.


Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 525 ◽  
Author(s):  
Carmelo Lo Vecchio ◽  
Stefano Trocino ◽  
Sabrina Campagna Zignani ◽  
Vincenzo Baglio ◽  
Alessandra Carbone ◽  
...  

Tandem photoelectrochemical cells (PECs), made up of a solid electrolyte membrane between two low-cost photoelectrodes, were investigated to produce “green” hydrogen by exploiting renewable solar energy. The assembly of the PEC consisted of an anionic solid polymer electrolyte membrane (gas separator) clamped between an n-type Fe2O3 photoanode and a p-type CuO photocathode. The semiconductors were deposited on fluorine-doped tin oxide (FTO) transparent substrates and the cell was investigated with the hematite surface directly exposed to a solar simulator. Ionomer dispersions obtained from the dissolution of commercial polymers in the appropriate solvents were employed as an ionic interface with the photoelectrodes. Thus, the overall photoelectrochemical water splitting occurred in two membrane-separated compartments, i.e., the oxygen evolution reaction (OER) at the anode and the hydrogen evolution reaction (HER) at the cathode. A cost-effective NiFeOx co-catalyst was deposited on the hematite photoanode surface and investigated as a surface catalytic enhancer in order to improve the OER kinetics, this reaction being the rate-determining step of the entire process. The co-catalyst was compared with other well-known OER electrocatalysts such as La0.6Sr0.4Fe0.8CoO3 (LSFCO) perovskite and IrRuOx. The Ni-Fe oxide was the most promising co-catalyst for the oxygen evolution in the anionic environment in terms of an enhanced PEC photocurrent and efficiency. The materials were physico-chemically characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM).


2016 ◽  
Vol 42 ◽  
pp. 159-164 ◽  
Author(s):  
Pelin Komurcu ◽  
Emre Kaan Can ◽  
Erkan Aydin ◽  
Levent Semiz ◽  
Mehmet Sankir ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 689
Author(s):  
Prasanta Kumar Sahoo ◽  
Soubhagya Ranjan Bisoi ◽  
Yi-June Huang ◽  
Dung-Sheng Tsai ◽  
Chuan-Pei Lee

The production of hydrogen via the water splitting process is one of the most promising technologies for future clean energy requirements, and one of the best related challenges is the choice of the most highly efficient and cost effective electrocatalyst. Conventional electrocatalysts based on precious metals are rare and very-expensive for large-scale production of hydrogen, demanding the exploration for low-cost earth abundant alternatives. In this context, extensive works from both theoretical and experimental investigations have shown that two-dimensional (2D) layered materials have gained considerable attention as highly effective electrocatalytic materials for electrical-driven hydrogen production because of their unique layered structure and exciting electrical properties. This review highlights recent advancements on 2D layered materials, including graphene, transitional metal dichalcogenides (TMDs), layered double hydroxides (LDHs), MXene, and graphitic carbon nitride (g-C3N4) as cost-effective and highly efficient electrocatalysts for hydrogen production. In addition, some fundamental aspects of the hydrogen evolution reaction (HER) process and a wide ranging overview on several strategies to design and synthesize 2D layered material as HER electrocatalysts for commercial applications are introduced. Finally, the conclusion and futuristic prospects and challenges of the advancement of 2D layered materials as non-precious HER electrocatalysts are briefly discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Antonio Chica

Zeolites have been shown to be useful catalysts in a large variety of reactions, from acid to base and redox catalysis. The particular properties of these materials (high surface area, uniform porosity, interconnected pore/channel system, accessible pore volume, high adsorption capacity, ion-exchange ability, and shape/size selectivity) provide crucial features as effective catalysts and catalysts supports. Currently, new applications are being developed from the considerable existing knowledge about these important and remarkable materials. Among them, those applications related to the development of processes with less impact on the environment (green processes) and with the production of alternative and cleaner energies are of paramount importance. Hydrogen is believed to be critical for the energy and environmental sustainability. It is a clean energy carrier which can be used for transportation and stationary power generation. In the production of hydrogen, the development of new catalysts is one of the most important and effective ways to address the problems related to the sustainable production of hydrogen. This paper explores the possibility to use zeolites as catalysts or supports of catalysts to produce hydrogen from renewable resources. Specifically, two approaches have been considered: reforming of biomass-derived compounds (reforming of bioethanol) and water splitting using solar energy. This paper examines the role of zeolites in the preparation of highly active and selective ethanol steam reforming catalysts and their main properties to be used as efficient water splitting photocatalysts.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 524
Author(s):  
Yue Wu ◽  
Lihua Bi

In recent years, due to the impact of global warming, environmental pollution, and the energy crisis, international attention and demand for clean energy are increasing. Hydrogen energy is recognized as one of the clean energy sources. Water is considered as the largest potential supplier of hydrogen energy. However, artificial catalytic water splitting for hydrogen and oxygen evolution has not been widely used due to its high energy consumption and high cost during catalytic cracking. Therefore, the exploitation of photocatalysts, electrocatalysts, and photo-electrocatalysts for rapid, cost effective, and reliable water splitting is essentially needed. Polyoxometalates (POMs) are regarded as the potential candidates for water splitting catalysis. In addition to their excellent catalytic properties and reversibly redox activities, POMs can also modify semiconductors to overcome their shortcomings, and improve photoelectric conversion efficiency and photocatalytic activity, which has attracted more and more attention in the field of photoelectric water splitting catalysis. In this review, we summarize the latest applications of POMs and semiconductor composites in the field of photo-electrocatalysis (PEC) for hydrogen and oxygen evolution by catalytic water splitting in recent years and take the latest applications of POMs and semiconductor composites in photocatalysis for water splitting. In the conclusion section, the challenges and strategies of photocatalytic and PEC water-splitting by POMs and semiconductor composites are discussed.


2021 ◽  
Author(s):  
Yulu Ge ◽  
Zhenhua Lyu ◽  
Mariana Marcos Hernandez ◽  
Dino Villagran

Projected future global energy demands require sustainable energy sources as alternatives to the current world dependence on hydrocarbon fuels. The production of hydrogen and oxygen gas from water is a promising approach. Currently, water-splitting electrolyzers require precious metals as electrocalysts because they are active and stable. Yet, replacement of these precious metals by cost-effective alternatives is necessary for the economic feasibility of this approach. Here, we describe a molecular based polymeric approach that effectively removes the need to use any metal to electrochemically split water. The incorporation of free-base porphyrin units into a 2D network structure yields a stable and efficient bifunctional electrocatalyst for water oxidation and water reduction that can operate for days at competitive overpotentials comparable to metal based ones. <br><br><br>


2016 ◽  
Vol 1 (4) ◽  
pp. 243-267 ◽  
Author(s):  
Andebet Gedamu Tamirat ◽  
John Rick ◽  
Amare Aregahegn Dubale ◽  
Wei-Nien Su ◽  
Bing-Joe Hwang

Photoelectrochemical (PEC) water splitting is a promising technology for solar hydrogen production to build a sustainable, renewable and clean energy economy.


Author(s):  
Umberto Desideri ◽  
Francesco Zepparelli

This paper investigates the environmental impact of electric energy generation by using a PEMFC and an MCFC system. Fuel cells are considered to be ultra-clean energy conversion devices, since pollutants emissions during operation have a very low concentration, compared to those of traditional energy systems. In order to understand the real environmental impact of fuel cells, this is not enough and it is necessary to study their “cradle-to-grave” life, starting from the construction phase, to the operational life and eventually to its disposal. In fact, it is not really correct to say that fuel cells are almost zero-emission systems, because they produce not-negligible emissions during manufacturing and to produce hydrogen. The method used in this paper is the Life Cycle Assessment (LCA), which has been calculated with the software SimaPro 5.0. The functional unit chosen in this study is the production of 1 kWh of electric energy by a PEMFC and an MCFC. Thanks to this approach, the critical process related to the production of energy by the previous fuel cell systems, (i.e. the production of hydrogen by natural gas steam reforming), has been determined. After a separated LCA of the PEMFC and the MCFC, a comparison was made between the two systems, considering the environmental impact of electric energy generation. Finally, the production of electric energy by a PEMFC and an MCFC systems is compared to that by conventional energy conversion systems.


Sign in / Sign up

Export Citation Format

Share Document