A pirfenidone loaded spray dressing based on lyotropic liquid crystals for deep partial thickness burn treatment: healing promotion and scar prophylaxis

2020 ◽  
Vol 8 (13) ◽  
pp. 2573-2588 ◽  
Author(s):  
Jintian Chen ◽  
Hui Wang ◽  
Liling Mei ◽  
Bei Wang ◽  
Ying Huang ◽  
...  

This study develops a HA combined lyotropic liquid crystal based spray dressing loaded with pirfenidone for wound healing and scar prophylaxis.

2011 ◽  
Vol 399-401 ◽  
pp. 532-537
Author(s):  
Li Hua Liu ◽  
Ying Bai ◽  
Fu Min Wang ◽  
Ning Liu

TiO2 nanomaterials were synthesized in lyotropic liquid crystal formed by nonionic surfactant TritonX-100 and TiOSO4 aqueous solution with NH3•H2O as precipitator. The lyotropic liquid crystals were characterized by means of POM and Low-angle XRD. FT-IR, TGA, XRD, TEM were used to characterize the TiO2 samples. It was found that all the lytropic liquid crystal were in lamellar liquid crysal phase and after casting the micro-structure of the LLC phase, the TiO2 samples were self-assemble to form lamellar, sphere and rod structures. According to the characterization results, possible formation mechanism was proposed.


2017 ◽  
Vol 16 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Saruta Wattanaploy ◽  
Kusuma Chinaroonchai ◽  
Nantaporn Namviriyachote ◽  
Pornprom Muangman

Silver sulfadiazine is commonly used in the treatment of partial-thickness burns, but it sometimes forms pseudo-eschar and delays wound healing. Polyhexanide/betaine gel, a new wound cleansing and moisturizing product, has some advantages in removing biofilm and promotes wound healing. This study was designed to compare clinical efficacy of polyhexanide/betaine gel with silver sulfadiazine in partial-thickness burn treatment. From September 2013 to May 2015, 46 adult patients with partial-thickness burn ≥10% total body surface area that were admitted to the Burn Unit of Siriraj Hospital within 48 hours after injury were randomly allocated into 2 groups. One group was treated with polyhexanide/betaine gel, and the other group was treated with silver sulfadiazine. Both groups received daily dressing changes and the same standard care given to patients with burns in this center. Healing times in the polyhexanide/betaine gel group and silver sulfadiazine group were 17.8 ± 2.2 days and 18.8 ± 2.1 days, respectively ( P value .13). There were no significant differences in healing times, infection rates, bacterial colonization rates, and treatment cost in both groups. The pain score of the polyhexanide/betaine gel group was significantly less than the silver sulfadiazine group at 4 to 9 days after treatment ( P < .001). The satisfactory assessment result of the polyhexanide/betaine gel group was better than that in the silver sulfadiazine group. These data indicate the need for adequately designed studies to elicit the full potential of polyhexanide gel as a wound dressing for partial-thickness burn wounds.


2015 ◽  
Vol 1095 ◽  
pp. 371-376
Author(s):  
Qiu Li Yang ◽  
Xin Ran Guan ◽  
Xiao Na Xie ◽  
Shao Wei Wei ◽  
Yi Wen Fang

This paper focused on synthesizing the surfactant lyotropic liquid crystals (LLCs) through mixing the coconut diethanol amide (6501), primary alcobol ethoxylate (AEO9) and water. The LLCs phases formed in the ternary system are thoroughly investigated by polarized optical microscopy (POM). The obtained LLCs were characterized by XRD and SEM in order to analysis the texture, structure and the transformation. In addition, the LLCs have been applied in the preparation of TiO2nanoparticles in our research. The obtained TiO2powder were characterized by XRD and SEM, more importantly, the results showed that the LLCs are effective in the process of synthesizing TiO2nanoparticles.


2012 ◽  
Vol 733 ◽  
pp. 127-131
Author(s):  
Ramesh Yadav ◽  
K. Chandramani Singh ◽  
S.R. Choudhary ◽  
P.C. Jain

Different compositions of surfactant systems give rise to a rich variety of structures of aggregates. At higher concentrations of surfactant in water, the surfactant molecules aggregate to form lyotropic liquid crystals [1]. In the present work we have prepared two surfactant systems consisting of (i) 20% of cetyl-trimethyl-ammonium-bromide (CTAB) in water, and (ii) 30% of tetra-decyl-trimethyl-ammonium-bromide (TTAB) in water. Both the systems exhibit various lyotropic liquid crystal structures when an increasing amount of co-surfactant is added as third component [2, 3]. These liquid crystalline structures are very sensitive to the solution conditions such as co-surfactant concentration, temperature, ionic strength, counter ion polarizability etc. In this study, positron life time spectroscopy and conductivity measurement have been employed to locate various phases exhibited by the lyotropic liquid crystals. In addition to delineating various phase boundaries of the systems, positron annihilation technique has also yielded new findings.


2021 ◽  
Vol 12 (15) ◽  
pp. 2236-2252
Author(s):  
Younes Saadat ◽  
Kyungtae Kim ◽  
Reza Foudazi

In this study, we show that how the locus of initiation can change kinetics and mechanical properties of polymerized lyotropic liquid crystals.


2016 ◽  
Vol 5 (12) ◽  
pp. 546-552 ◽  
Author(s):  
Justine S. Kim ◽  
Alexander J. Kaminsky ◽  
J. Blair Summitt ◽  
Wesley P. Thayer

2017 ◽  
Vol 9 (1) ◽  
pp. 8 ◽  
Author(s):  
Eva Otón ◽  
Morten Andreas Geday ◽  
Caterina Maria Tone ◽  
José Manuel Otón ◽  
Xabier Quintana

Lyotropic chromonic liquid crystals (LCLC) are a kind of LCs far less known and more difficult to control than conventional thermotropic nematics. Nevertheless, LCLCs are a preferred option -often the only one- for applications where hydrophilic materials must be employed. Being water-soluble, LCLC can be used in numerous biology related devices, for example in target detection in lab-on-chip devices. However, their properties and procedures to align them are still less explored, with only a very limited number of options available, especially for homeotropic alignment. In this work, novel organic alignment layers and alignment properties have been explored for selected LCLCs. Non-conventional organic alignment layers were tested and new suitable procedures and materials for both homogeneous and homeotropic alignments have been found. Full Text: PDF ReferencesS.L. Hefinstine, O.D. Lavrentovich, C.J. Woolverton, "Lyotropic liquid crystal as a real-time detector of microbial immune complexes", Lett. Appl. Microbiol. 43, 27 (2006). CrossRef M.A. Geday, M. Ca-o-García, J.M. Escolano, E. Otón, J.M. Otón, X. Quintana, Conference on Liquid Crystals CLC'16, Poland (2016).M.A. Geday, E. Otón, J.M. Escolano, J.M. Otón, X. Quintana, Patent WO 2015193525 (2015). DirectLink Yu.A. Nastishin et al., "Optical characterization of the nematic lyotropic chromonic liquid crystals: Light absorption, birefringence, and scalar order parameter", Phys. Rev. E, 72 (4) 41711 (2005). CrossRef A. Mcguire, et al., "Orthogonal Orientation of Chromonic Liquid Crystals by Rubbed Polyamide Films", Chem. Phys. Chem. 15 (7) (2014). CrossRef J. Jeong, et al., "Homeotropic Alignment of Lyotropic Chromonic Liquid Crystals Using Noncovalent Interactions", Langmuir 30(10) 2914 (2014). CrossRef J.Y. Kim, H.-Tae Jung, "Macroscopic alignment of chromonic liquid crystals using patterned substrates", Phys. Chem. Chem. Phys. 18, 10362 (2016). CrossRef E. Otón, J.M. Escolano, X. Quintana, J.M. Otón, M.A. Geday, "Aligning lyotropic liquid crystals with silicon oxides", Liq. Cryst. 42 (8) 1069 (2015). CrossRef H.S. Park, et al., "Condensation of Self-Assembled Lyotropic Chromonic Liquid Crystal Sunset Yellow in Aqueous Solutions Crowded with Polyethylene Glycol and Doped with Salt", Langmuir 27, 4164 (2011). CrossRef H.S. Park, et al., "Self-Assembly of Lyotropic Chromonic Liquid Crystal Sunset Yellow and Effects of Ionic Additives", J. Phys. Chem. B 112, 16307 (2008). CrossRef R Caputo et al., "POLICRYPS: a liquid crystal composed nano/microstructure with a wide range of optical and electro-optical applications", J. Opt. A: Pure Appl. Opt. 11, 024017 (2009). CrossRef


2019 ◽  
Vol 14 (2) ◽  
pp. 101-106
Author(s):  
Zainab Qureshi ◽  
Taous Khan ◽  
Abdul Jabbar Shah ◽  
Fazli Wahid

This study was conducted to evaluate the topical efficacy of Solanum incanum for the treatment of partial-thickness burn in mice model. Mice were treated with topical ointment of S. incanum three times daily for 14 days. The wound healing was observed through wound contraction and histological parameters. The group treated with S. incanum ointment showed 81% reduction in wound area as compared to negative control where wound area reduced to 22%. The histological analysis further confirmed that ointment favors the tissue regeneration and reepithelization thus heal wound rapidly as com-pared to other groups. In conclusion, S. incanum extract enhances wound healing and tissue regeneration.


2020 ◽  
Vol 41 (3) ◽  
pp. 657-662 ◽  
Author(s):  
Yanwei Sun ◽  
Yongqian Cao ◽  
Ran Zhao ◽  
Famei Xu ◽  
Dan Wu ◽  
...  

Abstract In this study, we aimed to evaluate the therapeutic effects of autologous platelet-rich plasma (PRP) on deep partial-thickness burns in Bama pigs. Deep partial-thickness burn wounds were created on the back of Bama pigs. The reepithelialization time was compared between the PRP and control groups. The mean score of Ki67 (+) cells and α-SMA (+) vessels, the mean thickness of epidermis and dermis of the healing wounds were determined via H&E staining and immunohistochemical assay. The levels of the growth factors epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) were examined by ELISA. Our data showed that the time to wound reepithelialization was shorter in the PRP group compared with the control group. The thickness of the epidermis was larger in the PRP group compared with the control group. On the 7th and 14th days after the treatment, the mean score of Ki67 (+) cells and α-SMA (+) vessels were higher in the PRP group compared with the control group. The PRP group showed higher levels of growth factors (EGF, bFGF, and VEGF) compared with the control group by ELISA. The results indicated that PRP could improve wound healing process of deep partial-thickness burns in Bama pigs. The PRP increased the thickness of epidermis of the healed wounds, cell proliferation, and angiogenesis. We demonstrated that applying PRP had a greater potential for the treatment of deep partial-thickness burns.


Sign in / Sign up

Export Citation Format

Share Document