Ni-Doped ZrO2 nanoparticles decorated MW-CNT nanocomposite for the highly sensitive electrochemical detection of 5-amino salicylic acid

The Analyst ◽  
2021 ◽  
Author(s):  
Nandini Nataraj ◽  
Siva Kumar Krishnan ◽  
Tse-Wei Chen ◽  
Shen-Ming Chen ◽  
Bih-Show Lou

Ni-ZrO2/MWCNT/GCE for highly sensitive electrochemical detection of 5-ASA in biofluids.

2020 ◽  
Vol 17 (6) ◽  
pp. 488-495
Author(s):  
Hussein Ali Al-Bahrani ◽  
Mohanad Mousa Kareem ◽  
Abdul Amir Kadhum ◽  
Nour A. Alrazzak

Background: The phthalocyanines a series of compounds involves four iso-indole units linked by aza nitrogen atoms bonded with metal atoms that are normally located in the center a phthalocyanines ring. Some of the central metal-phthalocyanines can be excited by ultraviolet light and emit a fluorescence in far-red region. Objective: To synthesize a derivative of phthalocyanines namely 4,4',4' '-tri-(dodecenyl succinic anhydride)- 4' ' '-(5-amino salicylic acid) zinc phthalocyanine with a zinc central metal. Materials and Methods: The reaction of 4- nitro Phthalonitrile and 4- amino Phthalonitrile with ZnCl2 in the presence of dimethyl amino ethanol afforded 4,4',4' '-triamino-4' ' '-nitro zinc phthalocyanine. This product reacted with 5-amino salicylic acid to yield tetra-(5-amino salicylic acid) zinc phthalocyanine. A dodecenyl succinic anhydride was added on the amine group of benzoic rings to afford 4,4',4' '-tri-(dodecenyl succinic anhydride)-4' ' '-(5-amino salicylic acid) zinc phthalocyanine(I), the target compound. Results and Discussion: Compound I is successfully synthesized with a yield of 72% from tetra-(5-amino salicylic acid) zinc phthalocyanine with dodecenyl succinic anhydride. Conclusion: The newly synthesized molecule of 4,4',4' '-tri-(dodecenyl succinic anhydride)-4' ' '-(5-amino salicylic acid) zinc phthalocyanine (I), tetra-(5-amino salicylic acid) zinc phthalocyanine(E) and 4,4',4' '- triamino-4' ' '-nitro zinc phthalocyanine (S). The reaction of 4- nitro Phthalonitrile and 4- amino and the structure of compound I is confirmed and its formation was proven.


2021 ◽  
Vol 26 ◽  
pp. 102005
Author(s):  
Balla Fall ◽  
Abdou K.D. Diaw ◽  
Modou Fall ◽  
Mohamed L. Sall ◽  
Momath Lo ◽  
...  

1954 ◽  
Vol 7 (12) ◽  
pp. 808-812 ◽  
Author(s):  
F. Bertinotti ◽  
C. Giacomello ◽  
A. M. Liquori

2021 ◽  
pp. 106770
Author(s):  
Lei Fan ◽  
Yuying Xin ◽  
Yingming Xu ◽  
Xianfa Zhang ◽  
Xiaoli Cheng ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 903
Author(s):  
Wenrui Gao ◽  
Yan Liu ◽  
Juan Huang ◽  
Yaqiu Chen ◽  
Chen Chen ◽  
...  

Seed germination is an important phase transitional period of angiosperm plants during which seeds are highly sensitive to different environmental conditions. Although seed germination is under the regulation of salicylic acid (SA) and other hormones, the molecular mechanism underlying these regulations remains mysterious. In this study, we determined the expression of SA methyl esterase (MES) family genes during seed germination. We found that MES7 expression decreases significantly in imbibed seeds, and the dysfunction of MES7 decreases SA content. Furthermore, MES7 reduces and promotes seed germination under normal and salt stress conditions, respectively. The application of SA restores the seed germination deficiencies of mes7 mutants under different conditions. Taking together, our observations uncover a MeSA hydrolytic enzyme, MES7, regulates seed germination via altering SA titer under normal and abiotic stress conditions.


Sign in / Sign up

Export Citation Format

Share Document