Mechanism of stacking fault annihilation in 3C-SiC epitaxially grown on Si(001) by molecular dynamics simulations

CrystEngComm ◽  
2021 ◽  
Author(s):  
Andrey Sarikov ◽  
Anna Marzegalli ◽  
Luca Barbisan ◽  
Massimo Zimbone ◽  
Corrado Bongiorno ◽  
...  

In this work, annihilation mechanism of stacking faults (SFs) in epitaxial 3C-SiC layers grown on Si(001) substrates is studied by molecular dynamics (MD) simulations. The evolution of SFs located in...

2016 ◽  
Vol 18 (37) ◽  
pp. 25806-25816 ◽  
Author(s):  
Carlos Navarro-Retamal ◽  
Anne Bremer ◽  
Jans Alzate-Morales ◽  
Julio Caballero ◽  
Dirk K. Hincha ◽  
...  

Unfolding of intrinsically unstructured full-length LEA proteins in a differentially crowded environment can be modeled by 30 ns MD simulations in accordance with experimental data.


2005 ◽  
Vol 1 (4) ◽  
pp. 204-209
Author(s):  
O.B. Malcıoğlu ◽  
Ş. Erkoç

The minimum energy structures of CmTin microclusters and nanoparticles have been investigated theoretically by performing molecular–dynamics (MD) simulations. Selected crystalline and completely random initial geometries are considered. The potential energy function (PEF) used in the calculations includes two– and three–body atomic interactions for C-Ti binary systems. Molecular–dynamics simulations have been performed at 1 K and 300 K. It has been found that initial geometry has a very strong influence on relaxed geometry


2020 ◽  
Vol 22 (12) ◽  
pp. 6690-6697 ◽  
Author(s):  
Aman Jindal ◽  
Sukumaran Vasudevan

Hydrogen bonding OH···O geometries in the liquid state of linear alcohols, derived from ab initio MD simulations, show no change from methanol to pentanol, in contrast to that observed in their crystalline state.


2019 ◽  
Vol 21 (19) ◽  
pp. 9865-9875 ◽  
Author(s):  
Sharmin Shabnam ◽  
Qian Mao ◽  
Adri C. T. van Duin ◽  
K. H. Luo

Effect of nickel clusters on the formation of incipient soot from PAH precursors via ReaxFF-MD simulations.


RSC Advances ◽  
2018 ◽  
Vol 8 (20) ◽  
pp. 11134-11144 ◽  
Author(s):  
Lanyan He ◽  
Pingmei Wang ◽  
Lipeng He ◽  
Zhou Qu ◽  
Jianhui Luo ◽  
...  

The self-organization of five model side-chain decorated polyaromatic asphaltene molecules with or without toluene solvent was investigated by means of molecular dynamic (MD) simulations.


2020 ◽  
Vol 978 ◽  
pp. 428-435
Author(s):  
Krishna Chaitanya Katakam ◽  
Natraj Yedla

The mechanical properties and deformation mechanism of nickel nanowire of dimension 100 Å (x-axis) × 1000 Å (y-axis) × 100 Å (z-axis) containing a single linear surface defect is studied at different temperatures using molecular dynamics simulations. The defect is created by deleting a row of atoms on the surface and is inclined at 25° to the loading axis. The tensile test is carried out at 0.01 K, 10 K, 100 K and 300 K temperature and 108 s-1strain rate. To determine the effect of temperature on the stress-strain curves, fracture and failure mechanism, a thorough investigation has taken place. Maximum strength of 21.26 GPa is observed for NW deformed at 0.01 K temperature and the strength decreased with increase in temperature. Through slip lines, the deformation relief pattern taken place by developing the extrusion areas along with intrusion over the surface defect area in all NWs deformed at respective temperatures. Further it is observed that fracture strains decrease with increase in temperature. After yielding, stacking faults associated with dislocations are generated by slip on all four {111} planes. Different type of dislocations with both intrinsic and extrinsic stacking faults are noticed. Out of all dislocation densities, Shockley partial dislocation densities has recorded a maximum value.


Clay Minerals ◽  
2015 ◽  
Vol 50 (3) ◽  
pp. 353-367 ◽  
Author(s):  
B. Schampera ◽  
R. Solc ◽  
S.K. Woche ◽  
R. Mikutta ◽  
S. Dultz ◽  
...  

AbstractOrganoclays are sorbent materials prepared from clays by exchanging inorganic with organic cations. Their properties depend on the loading and conformational structure of the organic cations, but little information is available about the surface structures of organoclays. In this work, X-ray photoelectron spectroscopy (XPS) and classical molecular dynamics (MD) simulations are combined to characterize the external interface of an organoclay prepared from hexadecylpyridinium (HDPy+) and bentonite. The XPS survey spectra show well the varying elemental composition of the surface with increasing amount of surfactant, showing a decreasing contribution of clay-derived elements with increasing organic coverage. The high-resolution C 1s XPS spectra depict sensitively the surface arrangement of the surfactant. In combination with MD simulations, the results implied a monolayer coating for low surfactant coverage and a disordered bilayer arrangement at high surfactant uptakes. Molecular dynamics simulations showed that for very high cation uptake a quasi-paraffin-like configuration is also possible. The combination of experimental and modelling methods yielded congruent information on the molecular-scale arrangement of organic cations at the organoclay surfaces and the controlling mechanisms.


2005 ◽  
Vol 09 (03) ◽  
pp. 170-185 ◽  
Author(s):  
Jingyuan He ◽  
Todd A. Kaprak ◽  
Marjorie A. Jones ◽  
Timothy D. Lash

The first cyclic tetrapyrrolic intermediates in the heme biosynthetic pathway are generated as porphyrinogens (hexahydroporphyrins), but unlike the aromatic porphyrin nucleus these structures must take on highly distorted conformations. Although this structural requirement is self-evident, these intermediates are often represented as flat structures. In order to gain a better understanding of the enzyme coproporphyrinogen oxidase, which is responsible for the conversion of coproporphyrinogen-III to protoporphyrinogen-IX, conformational studies were performed using molecular dynamics simulations. These studies were carried out on the natural substrate and six synthetic analogues using a Silicon Graphics workstation and the BIOGRAF 3.1 program (Molecular Simulations Inc.). The dynamics were run for 50 ps using the Verlet algorithm and Dreiding force field for each porphyrinogen with 500 quenching steps at 300 and 500 K. The five lowest energy conformations were then used as starting structures for simulations of 200 ps. The data show that the propionic acid side chains critically affect the conformations by hydrogen bonding interactions, and the chair and saddle forms are the most stable conformations. In many cases the B ring propionate moiety, which is known to be crucial for substrate recognition for coproporphyrinogen oxidase, is found to be free of intramolecular hydrogen bonds. However, simulations in the presence of water molecules gave chaise longe conformations and intermolecular interactions overwhelmed other effects for solvated porphyrinogens. Although the local environment will influence the preferred conformations, these MD simulations provide insights into how natural porphyrinogens can behave under physiological conditions.


2015 ◽  
Vol 1753 ◽  
Author(s):  
Ralf Meyer ◽  
Chris M. Mangiardi

ABSTRACTThis article discusses novel algorithms for molecular-dynamics (MD) simulations with short-ranged forces on modern multi- and many-core processors like the Intel Xeon Phi. A task-based approach to the parallelization of MD on shared-memory computers and a tiling scheme to facilitate the SIMD vectorization of the force calculations is described. The algorithms have been tested with three different potentials and the resulting speed-ups on Intel Xeon Phi coprocessors are shown.


2017 ◽  
Vol 19 (16) ◽  
pp. 10317-10325 ◽  
Author(s):  
Jafar Ghorbanian ◽  
Ali Beskok

This paper concentrates on the unconventional temperature profiles and heat fluxes observed in non-equilibrium molecular dynamics (MD) simulations of force-driven liquid flows in nano-channels.


Sign in / Sign up

Export Citation Format

Share Document