FB-REDA: fragment-based decomposition analysis of the reorganization energy for organic semiconductors

2020 ◽  
Vol 22 (21) ◽  
pp. 11881-11890 ◽  
Author(s):  
Kun-Han Lin ◽  
Clémence Corminboeuf

We present a fragment-based decomposition analysis tool (FB-REDA) for the reorganisation energy (λ) in the framework of fragment-mode analysis. FB-REDA provides useful insight into rational design low-λ organic semiconductors.

Author(s):  
Suryakanti Debata ◽  
Smruti R. Sahoo ◽  
Rudranarayan Khatua ◽  
Sridhar Sahu

In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds.


RSC Advances ◽  
2015 ◽  
Vol 5 (93) ◽  
pp. 76642-76650 ◽  
Author(s):  
Kiana Gholamjani Moghaddam ◽  
Seyed Majid Hashemianzadeh

Our study provides insight into the effect of different substituents on the G-quadruplex–ligand interactions which helps us rational ligand design.


2022 ◽  
Vol 14 (2) ◽  
pp. 896
Author(s):  
Vítor Gouveia ◽  
João P. Duarte ◽  
Hugo Sarmento ◽  
José Freitas ◽  
Ricardo Rebelo-Gonçalves ◽  
...  

Set pieces are important for the success of football teams, with the corner kick being one of the most game defining events. The aim of this research was twofold: (1) to analyze the corner kicks of a senior football amateur team, and (2) to compare the corner kicks of successful and unsuccessful teams (of the 2020/21 sporting season). In total, 500 corners were observed using a bespoke notational analysis tool, using a specific observational instrument tool (8 criteria; 25 categories). Out of the 500 corner kicks, 6% resulted in a goal. A greater number of direct corners using inswing trajectories were performed (n = 54%). Corners were delivered to central and front post areas most frequently (n = 79%). Five attackers were most predominantly used for offensive corners (n = 58%), but defenders won the ball more frequently (n = 44%). Attempts at goal occurred following a corner most commonly from outside of the box (n = 7%). Goals were scored most frequently with the foot (n = 16%) and head (n = 15%). Successful teams are more effective at reaching the attackers and score more goals directly from corners. Unsuccessful teams deliver more corner kicks out of play, the first touch is more frequently from the opposition defenders, and fewe goals are scored from corner kicks. The study provides an insight into the determining factors and patterns that influence corner kicks and success in football matches. This information should be used by coaches to prepare teams for both offensive and defensive corner kicks to increase team success and match outcomes.


Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1037
Author(s):  
Jorge González-Bacerio ◽  
Irina Arocha ◽  
Mirtha Elisa Aguado ◽  
Yanira Méndez ◽  
Sabrina Marsiccobetre ◽  
...  

Chagas disease, caused by the kinetoplastid parasite Trypanosoma cruzi, is a human tropical illness mainly present in Latin America. The therapies available against this disease are far from ideal. Proteases from pathogenic protozoan have been considered as good drug target candidates. T. cruzi acidic M17 leucyl-aminopeptidase (TcLAP) mediates the major parasite’s leucyl-aminopeptidase activity and is expressed in all parasite stages. Here, we report the inhibition of TcLAP (IC50 = 66.0 ± 13.5 µM) by the bestatin-like peptidomimetic KBE009. This molecule also inhibited the proliferation of T. cruzi epimastigotes in vitro (EC50 = 28.1 ± 1.9 µM) and showed selectivity for the parasite over human dermal fibroblasts (selectivity index: 4.9). Further insight into the specific effect of KBE009 on T. cruzi was provided by docking simulation using the crystal structure of TcLAP and a modeled human orthologous, hLAP3. The TcLAP-KBE009 complex is more stable than its hLAP3 counterpart. KBE009 adopted a better geometrical shape to fit into the active site of TcLAP than that of hLAP3. The drug-likeness and lead-likeness in silico parameters of KBE009 are satisfactory. Altogether, our results provide an initial insight into KBE009 as a promising starting point compound for the rational design of drugs through further optimization.


Author(s):  
Pedro Furtado

Self-tuning physical database organization involves tools that determine automatically the best solution concerning partitioning, placement, creation and tuning of auxiliary structures (e.g. indexes), based on the workload. To the best of our knowledge, no tool has focused on a relevant issue in parallel databases and in particular data warehouses running on common off-the-shelf hardware in a sharednothing configuration: determining the adequate tradeoff for balancing load and availability with costs (storage and loading costs). In previous work, we argued that effective load and availability balancing over partitioned datasets can be obtained through chunk-wise placement and replication, together with on-demand processing. In this work, we propose ChunkSim, a simulator for system size planning, performance analysis against replication degree and availability analysis. We apply the tool to illustrate the kind of results that can be obtained by it. The whole discussion in the chapter provides very important insight into data allocation and query processing over shared-nothing data warehouses and how a good simulation analysis tool can be built to predict and analyze actual systems and intended deployments.


2019 ◽  
Vol 43 (20) ◽  
pp. 7790-7796 ◽  
Author(s):  
Lei Yang ◽  
Jie Mao ◽  
Cheng-Zhu Yin ◽  
Mohamad Akbar Ali ◽  
Xiang-Ping Wu ◽  
...  

The lower charge mobility of organic semiconductors relative to that of inorganic semiconductors is a thorny problem that still has not been resolved.


2020 ◽  
Vol 117 (37) ◽  
pp. 22849-22857 ◽  
Author(s):  
Basil J. Greber ◽  
Juan M. Perez-Bertoldi ◽  
Kif Lim ◽  
Anthony T. Iavarone ◽  
Daniel B. Toso ◽  
...  

The human CDK-activating kinase (CAK), a complex composed of cyclin-dependent kinase (CDK) 7, cyclin H, and MAT1, is a critical regulator of transcription initiation and the cell cycle. It acts by phosphorylating the C-terminal heptapeptide repeat domain of the RNA polymerase II (Pol II) subunit RPB1, which is an important regulatory event in transcription initiation by Pol II, and it phosphorylates the regulatory T-loop of CDKs that control cell cycle progression. Here, we have determined the three-dimensional (3D) structure of the catalytic module of human CAK, revealing the structural basis of its assembly and providing insight into CDK7 activation in this context. The unique third component of the complex, MAT1, substantially extends the interaction interface between CDK7 and cyclin H, explaining its role as a CAK assembly factor, and it forms interactions with the CDK7 T-loop, which may contribute to enhancing CAK activity. We have also determined the structure of the CAK in complex with the covalently bound inhibitor THZ1 in order to provide insight into the binding of inhibitors at the CDK7 active site and to aid in the rational design of therapeutic compounds.


2009 ◽  
Vol 420 (2) ◽  
pp. 221-227 ◽  
Author(s):  
Helge C. Dorfmueller ◽  
Vladimir S. Borodkin ◽  
Marianne Schimpl ◽  
Daan M. F. van Aalten

O-GlcNAcylation is an essential, dynamic and inducible post-translational glycosylation of cytosolic proteins in metazoa and can show interplay with protein phosphorylation. Inhibition of OGA (O-GlcNAcase), the enzyme that removes O-GlcNAc from O-GlcNAcylated proteins, is a useful strategy to probe the role of this modification in a range of cellular processes. In the present study, we report the rational design and evaluation of GlcNAcstatins, a family of potent, competitive and selective inhibitors of human OGA. Kinetic experiments with recombinant human OGA reveal that the GlcNAcstatins are the most potent human OGA inhibitors reported to date, inhibiting the enzyme in the sub-nanomolar to nanomolar range. Modification of the GlcNAcstatin N-acetyl group leads to up to 160-fold selectivity against the human lysosomal hexosaminidases which employ a similar substrate-assisted catalytic mechanism. Mutagenesis studies in a bacterial OGA, guided by the structure of a GlcNAcstatin complex, provides insight into the role of conserved residues in the human OGA active site. GlcNAcstatins are cell-permeant and, at low nanomolar concentrations, effectively modulate intracellular O-GlcNAc levels through inhibition of OGA, in a range of human cell lines. Thus these compounds are potent selective tools to study the cell biology of O-GlcNAc.


Sign in / Sign up

Export Citation Format

Share Document