Modulation of the electronic band structure of silicene by polar two-dimensional substrates

2020 ◽  
Vol 22 (37) ◽  
pp. 21412-21420 ◽  
Author(s):  
KaiJuan Pang ◽  
YaDong Wei ◽  
Xiaodong Xu ◽  
WeiQi Li ◽  
JianQun Yang ◽  
...  

Using the density functional theory (DFT) calculations, we find that group-III chalcogenide monolayers can serve as a suitable substrate for silicene, and the Dirac electron band properties of silicene are also fully preserved.


2008 ◽  
Vol 63 (2) ◽  
pp. 154-160 ◽  
Author(s):  
Lara Kabalan ◽  
Samir F. Matar ◽  
Mirvat Zakhour ◽  
Jean François Létarda

Ab initio computations within the density functional theory are reported for the spin cross-over complex [Fe(btz)2(NCS)2] (btz = 2.2'-bis-4.5-dihydrothiazine), where 3d6 FeII is characterized by high-spin (HS t2g4, eg2) and low-spin (LS t2g6, eg0) states. Results of infrared and Raman spectra for the isolated molecule are complemented for the crystalline solid with a full account of the electronic band structure properties: the density of states assessing the crystal field effects and the chemical bonding, assigning a specific role to the Fe-N interactions within the coordination sphere of FeII



Nanoscale ◽  
2019 ◽  
Vol 11 (18) ◽  
pp. 9000-9007 ◽  
Author(s):  
Imran Muhammad ◽  
Huanhuan Xie ◽  
Umer Younis ◽  
Yu Qie ◽  
Waseem Aftab ◽  
...  

Motivated by the feasibility of hybridizing C- and BN-units as well as the recent synthesis of a triphenylene-graphdiyne (TpG) monolayer, for the first time we explore the stability and electronic band structure of a Tp-BNyne monolayer composed of C-chains and the BN analog of triphenylene (Tp-BNyne) by using density functional theory.



2019 ◽  
Vol 807 ◽  
pp. 115-120
Author(s):  
Ling Ping Xiao ◽  
Yun Qin Liu

Based on the density functional theory (DFT), the first-principles approach is used to study the electronic band structure of B-doped wuritzite ZnO with different pressure. The pressure effects on the lattice parameters, electronic band structures, and partial density of states (PDOS) of crystalline B-doped ZnO are calculated up to 8 GPa. Moreover, the evolution of the dielectric function, absorption coefficient (), reflectivity (), and the real part of the refractive index () at high pressure are also presented. Keywords: high pressure; density functional theory; B-doped ZnO.



2018 ◽  
Vol 60 (9) ◽  
pp. 1662
Author(s):  
А.С. Шинкоренко ◽  
В.И. Зиненко ◽  
М.С. Павловский

AbstractAb initio calculations of the structural, electronic, and optical properties of the CdB_4O_7 and HgB_4O_7 tetraborate compounds in three structural modifications with the Pbca , Cmcm , and Pmn 2_1 symmetry have been performed in the framework of the density functional theory using the VASP package. The calculations of the electronic band structure showed that these compounds in all the investigated modifications are dielectrics with a band gap of 2–4 eV. The calculation of the structural properties of the tetraborates under pressure showed that the phase transition between the Pbca and Pmn 2_1 structures in cadmium and mercury tetraborates occurs under pressures of 4.8 and 4.7 GPa, respectively.



2009 ◽  
Vol 23 (32) ◽  
pp. 5929-5934 ◽  
Author(s):  
T. JEONG

The electronic band structure of LuPd 2 Si 2 was studied based on the density functional theory within local density approximation and fully relativistic schemes. The Lu 4f states are completely filled and have flat bands around -5.0 eV. The fully relativistic band structure scheme shows that spin–orbit coupling splits the 4f states into two manifolds, the 4f7/2 and the 4f5/2 multiplet.



RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 42-52
Author(s):  
M. Munawar ◽  
M. Idrees ◽  
Iftikhar Ahmad ◽  
H. U. Din ◽  
B. Amin

Using density functional theory calculations, we have investigated the electronic band structure, optical and photocatalytic response of BSe, M2CO2 (M = Ti, Zr, Hf) monolayers and their corresponding BSe–M2CO2 (M = Ti, Zr, Hf) van der Waals heterostructures.



2020 ◽  
Author(s):  
Xianjue Chen ◽  
Marc Dubois ◽  
Silvana Radescu Cioranescu ◽  
Aditya Rawal ◽  
Chuan Zhao

Fluorinated single-layer diamond (“F-diamond”) is a new form of two-dimensional carbon allotrope. Herein, poly(dicarbon monofluoride) (C<sub>2</sub>F)<sub>n</sub> that is essentially made of stacked layers of “F-diamane” has been synthesized and exfoliated in a variety of solvents to yield well-dispersed ultrathin sheets. Microscopic and spectroscopic analyses revealed that the exfoliated sheets retained the “F-diamane”-like structure. The experimental results are supported by the density functional theory (DFT) calculations.





2014 ◽  
Vol 925 ◽  
pp. 390-395
Author(s):  
Noureddine Amrane ◽  
Maamar Benkraouda

We present a systematic and comparative study of the electronic properties of CeX monochalcogenides, The density of state (DOS) and electronic band structure of CeX (X=S, Se, Te) have been calculated using the full-potential linearized augmented plane-wave (FP-LAPW) + local orbital (lo) method based on the density functional theory (DFT), which is implemented in WIEN2k code. The trends in the high pressure behavior of these systems are discussed. Four approximations for the exchange-correlation functional have been used, the GGA's of Perdew-Burke-Ernzherhof. (PBE08) , Engel-Vosko (EV93), a modified version of the exchange potential proposed by Becke and Johnson (MBJ), and LDA+U is used to calculate the band gaps at different pressures. All methods allow for a description of the Ce f electrons as either localized or delocalized, it is found that the underestimations of the bandgap by means of LDA-GGA and Engel-Vosko are considerably improved by using the modified Becke-Johnson (MBJ) potential for all compounds in the series, On the other hand, LDA+U, method gives good results for the lighter chalcogenides, but it fails to give good results for the heavier cerium monochalcogenides.



Sign in / Sign up

Export Citation Format

Share Document