Low Ca2+ concentration doping enhances the mechanical properties and ionic conductivity of Na3PS4 superionic conductors based on first-principles

2020 ◽  
Vol 22 (35) ◽  
pp. 19816-19822
Author(s):  
Bowen Huang ◽  
Junbo Zhang ◽  
Yutao Shi ◽  
Xiaodong Lu ◽  
Jingjing Zhang ◽  
...  

A doping strategy to improve the electrochemical and mechanical properties of solid electrolytes.

2021 ◽  
Author(s):  
Jianwen Liang ◽  
Eveline van der Maas ◽  
Jing Luo ◽  
Xiaona Li ◽  
Ning Chen ◽  
...  

Abstract Understanding the relationship between structure, ionic conductivity, and synthesis is the key to the development of solid electrolytes for all-solid-state Lithium batteries. Here, we investigate chloride solid electrolytes with compositions Li3 − 3xM1+xCl6 (-0.14 < x ≤ 0.5, M = Tb, Dy, Ho, Y, Er, Tm). When x > 0.04, a trigonal to orthorhombic phase transition occurs in the isostructural Li-Dy-Cl, Li-Ho-Cl, Li-Y-Cl, Li-Er-Cl and Li-Tm-Cl solid electrolytes. The new orthorhombic phase shows a four-fold increase in ionic conductivity up to 1.3×10− 3 S cm− 1 at room temperature for Li2.73Ho1.09Cl6 (x = 0.09) when compared to the trigonal Li3HoCl6. For isostructural Li-Dy-Cl, Li-Y-Cl, Li-Er-Cl and Li-Tm-Cl solid electrolytes, about one order of magnitude increase in ionic conductivities are observed for the orthorhombic structure compared to the trigonal structure. Using the Li-Ho-Cl components as an example, detailed studies of its structure, phase transition, ionic conductivity, air stability and electrochemical stability have been made. Molecular dynamics simulations based on density functional theory reveal that the different cations arrangement in the orthorhombic structure leads to a higher lithium diffusivity as compared to the trigonal structure, rationalizing the improved ionic conductivities of the new Li-M-Cl electrolytes. All-solid-state batteries of In/Li2.73Ho1.09Cl6/NMC811 demonstrate excellent electrochemical performance at both room temperature and − 10°C. As relevant to the vast number of isostructural halide electrolytes, the present structure control strategy provides guidance for the design of novel halide superionic conductors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai Wang ◽  
Qingyong Ren ◽  
Zhenqi Gu ◽  
Chaomin Duan ◽  
Jinzhu Wang ◽  
...  

AbstractLi-ion-conducting chloride solid electrolytes receive considerable attention due to their physicochemical characteristics such as high ionic conductivity, deformability and oxidative stability. However, the raw materials are expensive, and large-scale use of this class of inorganic superionic conductors seems unlikely. Here, a cost-effective chloride solid electrolyte, Li2ZrCl6, is reported. Its raw materials are several orders of magnitude cheaper than those for the state-of-the-art chloride solid electrolytes, but high ionic conductivity (0.81 mS cm–1 at room temperature), deformability, and compatibility with 4V-class cathodes are still simultaneously achieved in Li2ZrCl6. Moreover, Li2ZrCl6 demonstrates a humidity tolerance with no sign of moisture uptake or conductivity degradation after exposure to an atmosphere with 5% relative humidity. By combining Li2ZrCl6 with the Li-In anode and the single-crystal LiNi0.8Mn0.1Co0.1O2 cathode, we report a room-temperature all-solid-state cell with a stable specific capacity of about 150 mAh g–1 for 200 cycles at 200 mA g–1.


2020 ◽  
Author(s):  
Saneyuki Ohno ◽  
Tim Bernges ◽  
Johannes Buchheim ◽  
Marc Duchardt ◽  
Anna-Katharina Hatz ◽  
...  

<p>Owing to highly conductive solid ionic conductors, all-solid-state batteries attract significant attention as promising next-generation energy storage devices. A lot of research is invested in the search and optimization of solid electrolytes with higher ionic conductivity. However, a systematic study of an <i>interlaboratory reproducibility</i> of measured ionic conductivities and activation energies is missing, making the comparison of absolute values in literature challenging. In this study, we perform an uncertainty evaluation via a Round Robin approach using different Li-argyrodites exhibiting orders of magnitude different ionic conductivities as reference materials. Identical samples are distributed to different research laboratories and the conductivities and activation barriers are measured by impedance spectroscopy. The results show large ranges of up to 4.5 mScm<sup>-1</sup> in the measured total ionic conductivity (1.3 – 5.8 mScm<sup>-1</sup> for the highest conducting sample, relative standard deviation 35 – 50% across all samples) and up to 128 meV for the activation barriers (198 – 326 meV, relative standard deviation 5 – 15%, across all samples), presenting the necessity of a more rigorous methodology including further collaborations within the community and multiplicate measurements.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sahib Hasan ◽  
Khagendra Baral ◽  
Neng Li ◽  
Wai-Yim Ching

AbstractChalcogenide semiconductors and glasses have many applications in the civil and military fields, especially in relation to their electronic, optical and mechanical properties for energy conversion and in enviormental materials. However, they are much less systemically studied and their fundamental physical properties for a large class chalcogenide semiconductors are rather scattered and incomplete. Here, we present a detailed study using well defined first-principles calculations on the electronic structure, interatomic bonding, optical, and mechanical properties for 99 bulk chalcogenides including thirteen of these crytals which have never been calculated. Due to their unique composition and structures, these 99 bulk chalcogenides are divided into two main groups. The first group contains 54 quaternary crystals with the structure composition (A2BCQ4) (A = Ag, Cu; B = Zn, Cd, Hg, Mg, Sr, Ba; C = Si, Ge, Sn; Q = S, Se, Te), while the second group contains scattered ternary and quaternary chalcogenide crystals with a more diverse composition (AxByCzQn) (A = Ag, Cu, Ba, Cs, Li, Tl, K, Lu, Sr; B = Zn, Cd, Hg, Al, Ga, In, P, As, La, Lu, Pb, Cu, Ag; C = Si, Ge, Sn, As, Sb, Bi, Zr, Hf, Ga, In; Q = S, Se, Te; $$\hbox {x} = 1$$ x = 1 , 2, 3; $$\hbox {y} = 0$$ y = 0 , 1, 2, 5; $$\hbox {z} = 0$$ z = 0 , 1, 2 and $$\hbox {n} = 3$$ n = 3 , 4, 5, 6, 9). Moreover, the total bond order density (TBOD) is used as a single quantum mechanical metric to characterize the internal cohesion of these crystals enabling us to correlate them with the calculated properties, especially their mechanical properties. This work provides a very large database for bulk chalcogenides crucial for the future theoretical and experimental studies, opening opportunities for study the properties and potential application of a wide variety of chalcogenides.


Sign in / Sign up

Export Citation Format

Share Document