Boron – Noble Gas Covalent Bond in Borenium and Boronium compounds

Author(s):  
Lily Arrué ◽  
Ricardo Pino-Rios

The capability of the BH2+ parent cation to bind noble gases (Ng) has been evaluated. The results show its potential to form Borenium (BH2Ng+) and Boronium (BH2Ng2+) cations. Conformational search...

2015 ◽  
Vol 30 (26) ◽  
pp. 1530053 ◽  
Author(s):  
R. Bernabei ◽  
P. Belli ◽  
A. Incicchitti ◽  
F. Cappella ◽  
R. Cerulli

An updated technical and methodological comparison of liquid noble gas experiments is presented with particular attention to the low energy physics application of double-phase noble gas detectors in direct Dark Matter investigations.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Kuanysh Samarkhanov ◽  
Mendykhan Khasenov ◽  
Erlan Batyrbekov ◽  
Inesh Kenzhina ◽  
Yerzhan Sapatayev ◽  
...  

The luminescence of Kr-Xe, Ar-Kr, and Ar-Xe mixtures was studied in the spectral range 300–970 nm when excited by 6Li (n, α)3 H nuclear reaction products in the core of a nuclear reactor. Lithium was deposited on walls of experimental cell in the form of a capillary-porous structure, which made it possible to measure up to a temperature of 730 K. The temperature dependence of the radiation intensity of noble gas atoms, alkali metals, and heteronuclear ionic noble gas molecules was studied. Also, as in the case of single-component gases, the appearance of lithium lines and impurities of sodium and potassium is associated with vaporization during the release of nuclear reaction products from the lithium layer. The excitation of lithium atoms occurs mainly as a result of the Penning process of lithium atoms on noble gas atoms in the 1s states and subsequent ion-molecular reactions. Simultaneous radiation at transitions of atoms of noble gases and lithium, heteronuclear ion molecules of noble gases allows us to increase the efficiency of direct conversion of nuclear energy into light.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2367
Author(s):  
Francesca Nunzi ◽  
Giacomo Pannacci ◽  
Francesco Tarantelli ◽  
Leonardo Belpassi ◽  
David Cappelletti ◽  
...  

The nature, strength, range and role of the bonds in adducts of noble gas atoms with both neutral and ionic partners have been investigated by exploiting a fine-tuned integrated phenomenological–theoretical approach. The identification of the leading interaction components in the noble gases adducts and their modeling allows the encompassing of the transitions from pure noncovalent to covalent bound aggregates and to rationalize the anomalous behavior (deviations from noncovalent type interaction) pointed out in peculiar cases. Selected adducts affected by a weak chemical bond, as those promoting the formation of the intermolecular halogen bond, are also properly rationalized. The behavior of noble gas atoms excited in their long-life metastable states, showing a strongly enhanced reactivity, has been also enclosed in the present investigation.


1989 ◽  
Vol 116 (1) ◽  
pp. 429-437
Author(s):  
Tobias Owen ◽  
Akiva Bar-Nun ◽  
Idit Kleinfeld

AbstractThe possible role of comets in bringing volatiles to the inner planets is investigated by means of laboratory studies of the ability of ice to trap gases at low temperatures. The pattern of the heavy noble gases formed in the atmosphere of Venus can be explained by the impact of a planetesimal composed of ices formed in the range of 20 to 30 K. The noble gas patterns on Mars and Earth are less explicable by cometary bombardment alone.


RSC Advances ◽  
2018 ◽  
Vol 8 (38) ◽  
pp. 21389-21398 ◽  
Author(s):  
Jeffrey L. Moran ◽  
Anton L. Cottrill ◽  
Jesse D. Benck ◽  
Pingwei Liu ◽  
Zhe Yuan ◽  
...  

Herein, we develop, demonstrate, and model a repeatable process for synthesizing ultra-low-thermal-conductivity closed-cell neoprene garments by infusing high-molecular-weight noble gases.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2933 ◽  
Author(s):  
Ranajit Saha ◽  
Gourhari Jana ◽  
Sudip Pan ◽  
Gabriel Merino ◽  
Pratim Kumar Chattaraj

Noble gases (Ngs) are the least reactive elements in the periodic table towards chemical bond formation when compared with other elements because of their completely filled valence electronic configuration. Very often, extreme conditions like low temperatures, high pressures and very reactive reagents are required for them to form meaningful chemical bonds with other elements. In this personal account, we summarize our works to date on Ng complexes where we attempted to theoretically predict viable Ng complexes having strong bonding to synthesize them under close to ambient conditions. Our works cover three different types of Ng complexes, viz., non-insertion of NgXY type, insertion of XNgY type and Ng encapsulated cage complexes where X and Y can represent any atom or group of atoms. While the first category of Ng complexes can be thermochemically stable at a certain temperature depending on the strength of the Ng-X bond, the latter two categories are kinetically stable, and therefore, their viability and the corresponding conditions depend on the size of the activation barrier associated with the release of Ng atom(s). Our major focus was devoted to understand the bonding situation in these complexes by employing the available state-of-the-art theoretic tools like natural bond orbital, electron density, and energy decomposition analyses in combination with the natural orbital for chemical valence theory. Intriguingly, these three types of complexes represent three different types of bonding scenarios. In NgXY, the strength of the donor-acceptor Ng→XY interaction depends on the polarizing power of binding the X center to draw the rather rigid electron density of Ng towards itself, and sometimes involvement of such orbitals becomes large enough, particularly for heavier Ng elements, to consider them as covalent bonds. On the other hand, in most of the XNgY cases, Ng forms an electron-shared covalent bond with X while interacting electrostatically with Y representing itself as [XNg]+Y−. Nevertheless, in some of the rare cases like NCNgNSi, both the C-Ng and Ng-N bonds can be represented as electron-shared covalent bonds. On the other hand, a cage host is an excellent moiety to examine the limits that can be pushed to attain bonding between two Ng atoms (even for He) at high pressure. The confinement effect by a small cage-like B12N12 can even induce some covalent interaction within two He atoms in the He2@B12N12 complex.


2020 ◽  
Vol 117 (25) ◽  
pp. 13997-14004 ◽  
Author(s):  
Michael W. Broadley ◽  
Peter H. Barry ◽  
David V. Bekaert ◽  
David J. Byrne ◽  
Antonio Caracausi ◽  
...  

Identifying the origin of noble gases in Earth’s mantle can provide crucial constraints on the source and timing of volatile (C, N, H2O, noble gases, etc.) delivery to Earth. It remains unclear whether the early Earth was able to directly capture and retain volatiles throughout accretion or whether it accreted anhydrously and subsequently acquired volatiles through later additions of chondritic material. Here, we report high-precision noble gas isotopic data from volcanic gases emanating from, in and around, the Yellowstone caldera (Wyoming, United States). We show that the He and Ne isotopic and elemental signatures of the Yellowstone gas requires an input from an undegassed mantle plume. Coupled with the distinct ratio of129Xe to primordial Xe isotopes in Yellowstone compared with mid-ocean ridge basalt (MORB) samples, this confirms that the deep plume and shallow MORB mantles have remained distinct from one another for the majority of Earth’s history. Krypton and xenon isotopes in the Yellowstone mantle plume are found to be chondritic in origin, similar to the MORB source mantle. This is in contrast with the origin of neon in the mantle, which exhibits an isotopic dichotomy between solar plume and chondritic MORB mantle sources. The co-occurrence of solar and chondritic noble gases in the deep mantle is thought to reflect the heterogeneous nature of Earth’s volatile accretion during the lifetime of the protosolar nebula. It notably implies that the Earth was able to retain its chondritic volatiles since its earliest stages of accretion, and not only through late additions.


Sign in / Sign up

Export Citation Format

Share Document