scholarly journals Noble Gases in Terrestrial Planets: Evidence for Cometary Impacts?

1989 ◽  
Vol 116 (1) ◽  
pp. 429-437
Author(s):  
Tobias Owen ◽  
Akiva Bar-Nun ◽  
Idit Kleinfeld

AbstractThe possible role of comets in bringing volatiles to the inner planets is investigated by means of laboratory studies of the ability of ice to trap gases at low temperatures. The pattern of the heavy noble gases formed in the atmosphere of Venus can be explained by the impact of a planetesimal composed of ices formed in the range of 20 to 30 K. The noble gas patterns on Mars and Earth are less explicable by cometary bombardment alone.

Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2367
Author(s):  
Francesca Nunzi ◽  
Giacomo Pannacci ◽  
Francesco Tarantelli ◽  
Leonardo Belpassi ◽  
David Cappelletti ◽  
...  

The nature, strength, range and role of the bonds in adducts of noble gas atoms with both neutral and ionic partners have been investigated by exploiting a fine-tuned integrated phenomenological–theoretical approach. The identification of the leading interaction components in the noble gases adducts and their modeling allows the encompassing of the transitions from pure noncovalent to covalent bound aggregates and to rationalize the anomalous behavior (deviations from noncovalent type interaction) pointed out in peculiar cases. Selected adducts affected by a weak chemical bond, as those promoting the formation of the intermolecular halogen bond, are also properly rationalized. The behavior of noble gas atoms excited in their long-life metastable states, showing a strongly enhanced reactivity, has been also enclosed in the present investigation.


2021 ◽  
Vol 2 (3) ◽  
pp. 33-39
Author(s):  
Nhi Thrinch ◽  
Honh Thung

Inundation and floods are caused by a combination of factors including lower rain catchment areas, decreasing infiltration rates, and an uneven distribution of rainfall throughout the year, which all combine to create flooding and inundation issues. The alternative option is to install an efficient drainage system that is ecologically friendly, since in addition to its role of accommodating and draining water, it also has the additional purpose of absorbing water into the subsurface soil layer. A pore hole is created at the bottom of the drainage channel in order for the water to be absorbed. There was a desire to investigate the impact of soil texture on the rate of infiltration, therefore this research was conducted. Three kinds of soil were utilized as infiltration medium, namely sandy loam, loam, and clayey loam, all of which were found in the surrounding area. In addition, there are three variants of hole spacing, namely 16 cm, 32 cm, and 48 cm, as well as three variations of flow rate, namely 400 cm3/s, 1500 cm3/s, and 2500 cm3/s, among others. As a consequence of laboratory studies, it has been shown that the impact of changes in flow rate on infiltration discharge is inversely proportional to the flow rate, i.e., the higher the flow rate, the smaller the infiltration discharge that occurs. The reason for this is because it is influenced by the flow velocity


Author(s):  
Mario Trieloff

Although the second most abundant element in the cosmos is helium, noble gases are also called rare gases. The reason is that they are not abundant on terrestrial planets like the Earth, which is characterized by orders of magnitude depletion of—particularly light—noble gases when compared to the cosmic element abundance pattern. Indeed, geochemical depletion and enrichment processes mean that noble gases are highly versatile tracers of planetary formation and evolution. When our solar system formed—or even before—small grains and first condensates incorporated small amounts of noble gases from the surrounding gas of solar composition, resulting in depletion of light He and Ne relative to heavy Ar, Kr, and Xe, leading to the “planetary type” abundance pattern. Further noble gas depletion occurred during flash heating of mm- to cm-sized objects (chondrules and calcium, aluminum-rich inclusions), and subsequently during heating—and occasionally differentiation—on small planetesimals, which were precursors of planets. Some of these objects are present today in the asteroid belt and are the source of many meteorites. Many primitive meteorites contain very small (micron to sub-micron size) rare grains that are older than our Solar System and condensed billions of years ago in in the atmospheres of different stars, for example, Red Giant stars. These grains are characterized by nucleosynthetic anomalies, in particular the noble gases, such as so-called s-process xenon. While planetesimals acquired a depleted noble gas component strongly fractionated in favor of heavy noble gases, the Sun and also gas giants like Jupiter attracted a much larger amount of gas from the protosolar nebula by gravitational capture. This resulted in a cosmic or “solar type” abundance pattern, containing the full complement of light noble gases. In contrast, terrestrial planets accreted from planetesimals with only minor contributions from the gaseous component of the protosolar nebula, which accounts for their high degree of depletion and essentially “planetary” elemental abundance pattern. The strong depletion in noble gases facilitates their application as noble gas geo- and cosmochronometers; chronological applications are based on being able to determine noble gas isotopes formed by radioactive decay processes, for example, 40Ar by 40K decay, 129Xe by 129I decay, or fission Xe from 238U or 244Pu decay. Particularly ingrowth of radiogenic xenon is only possible due to the depletion of primordial nuclides, which allows insight into the chronology of fractionation of lithophile parent nuclides and atmophile noble gas daughters. Applied to large-scale planetary reservoirs, this helps to elucidate the timing of mantle degassing and evolution of planetary atmospheres. Applied to individual rocks and minerals, it allows radioisotope chronology using short-lived (e.g., 129I–129Xe) or long-lived (e.g., 40K–40Ar) systems. The dominance of 40Ar in the terrestrial atmosphere allowed von Weizsäcker to conclude that most of the terrestrial atmosphere originated by degassing of the solid Earth, which is an ongoing process today at mid-ocean ridges, as indicated by outgassing of primordial helium from newly forming ocean crust. Mantle degassing was much more massive in the past, with most of the terrestrial atmosphere probably formed during the first few 100 million years of Earth’s history, in response to major evolutionary processes of accretion, terrestrial core formation, and the terminal accretion stage of a giant impact that formed our Moon. During accretion, solar noble gases were added to the mantle, presumably by solar wind irradiation of the small planetesimals and dust accreting to form the Earth. While the Moon-forming impact likely dissipated a major fraction of the primordial atmosphere, today’s atmosphere originated by addition of a late veneer of asteroidal and possibly cometary material combined with a decreasing rate of mantle degassing over time. As other atmophile elements behave similarly to noble gases, they also trace the origin of major volatiles on Earth, for example, water, nitrogen, and carbon.


Author(s):  
Mario Trieloff

This is an advance summary of a forthcoming article in the Oxford Encyclopedia of Planetary Science. Please check back later for the full article.Although the second most abundant element in the cosmos is helium, noble gases are also called rare gases. The reason is that they are not abundant on terrestrial planets like our Earth, which is characterized by orders of magnitude depletion of—particularly light—noble gases when compared to the cosmic element abundance pattern. Indeed, such geochemical depletion and enrichment processes make noble gases so versatile concerning planetary formation and evolution: When our solar system formed, the first small grains started to adsorb small amounts of noble gases from the protosolar nebula, resulting in depletion of light He and Ne when compared to heavy noble gases Ar, Kr, and Xe: the so-called planetary type abundance pattern. Subsequent flash heating of the first small mm to cm-sized objects (chondrules and calcium, aluminum rich inclusions) resulted in further depletion, as well as heating—and occasionally differentiation—on small planetesimals, which were precursors of larger planets and which we still find in the asteroid belt today from where we get rocky fragments in form of meteorites. In most primitive meteorites, we even can find tiny rare grains that are older than our solar system and condensed billions of years ago in circumstellar atmospheres of, for example, red giant stars. These grains are characterized by nucleosynthetic anomalies and particularly identified by noble gases, for example, so-called s-process xenon.While planetesimals acquired a depleted noble gas component strongly fractionated in favor of heavy noble gases, the sun and also gas giants like Jupiter attracted a much larger amount of gas from the protosolar nebula by gravitational capture. This resulted in a cosmic or “solar type” abundance pattern, containing the full complement of light noble gases. Contrary to Jupiter or the sun, terrestrial planets accreted from planetesimals with only minor contributions from the protosolar nebula, which explains their high degree of depletion and basically “planetary” elemental abundance pattern. Indeed this depletion enables another tool to be applied in noble gas geo- and cosmochemistry: ingrowth of radiogenic nuclides. Due to heavy depletion of primordial nuclides like 36Ar and 130Xe, radiogenic ingrowth of 40Ar by 40K decay, 129Xe by 129I decay, or fission Xe from 238U or 244Pu decay are precisely measurable, and allow insight in the chronology of fractionation of lithophile parent nuclides and atmophile noble gas daughters, mainly caused by mantle degassing and formation of the atmosphere.Already the dominance of 40Ar in the terrestrial atmosphere allowed C. F v. Weizsäcker to conclude that most of the terrestrial atmosphere originated by degassing of the solid Earth, which is an ongoing process today at mid ocean ridges, where primordial helium leaves the lithosphere for the first time. Mantle degassing was much more massive in the past; in fact, most of the terrestrial atmosphere formed during the first 100 million years of Earth´s history, and was completed at about the same time when the terrestrial core formed and accretion was terminated by a giant impact that also formed our moon. However, before that time, somehow also tiny amounts of solar noble gases managed to find their way into the mantle, presumably by solar wind irradiation of small planetesimals or dust accreting to Earth. While the moon-forming impact likely dissipated the primordial atmosphere, today´s atmosphere originated by mantle degassing and a late veneer with asteroidal and possibly cometary contributions. As other atmophile elements behave similar to noble gases, they also trace the origin of major volatiles on Earth, for example, water, nitrogen, sulfur, and carbon.


2020 ◽  
Vol 501 (1) ◽  
pp. 587-595
Author(s):  
John B Biersteker ◽  
Hilke E Schlichting

ABSTRACT The formation of the Solar system’s terrestrial planets concluded with a period of giant impacts. Previous works examining the volatile loss caused by the impact shock in the moon-forming impact find atmospheric losses of at most 20–30 per cent and essentially no loss of oceans. However, giant impacts also result in thermal heating, which can lead to significant atmospheric escape via a Parker-type wind. Here we show that H2O and other high-mean molecular weight outgassed species can be efficiently lost through this thermal wind if present in a hydrogen-dominated atmosphere, substantially altering the final volatile inventory of terrestrial planets. We demonstrate that a giant impact during terrestrial planet formation can remove several Earth oceans’ worth of H2O, and other heavier volatile species, together with a primordial hydrogen-dominated atmosphere. These results may offer an explanation for the observed depletion in Earth’s light noble gas budget and for its depleted xenon inventory, which suggest that Earth underwent significant atmospheric loss by the end of its accretion. Because planetary embryos are massive enough to accrete primordial hydrogen envelopes and because giant impacts are stochastic and occur concurrently with other early atmospheric evolutionary processes, our results suggest a wide diversity in terrestrial planet volatile budgets.


2021 ◽  
Author(s):  
Kevin Wöhner ◽  
Toshiki Wulf ◽  
Nina Vankova ◽  
Thomas Heine

We systematically explore the stability and properties of [B<sub>12</sub>X<sub>11</sub>Ng]<sup>−</sup> adducts resulting from the capture reaction of noble gas atoms (Ng) by anionic [B<sub>12</sub>X<sub>11</sub>]<sup>−</sup> clusters in the ion trap. [B<sub>12</sub>X<sub>11</sub>]<sup>−</sup> can be obtained by stripping one X<sup>−</sup> ligand off the icosahedral <i>closo</i>-dodecaborate dianion [B<sub>12</sub>X<sub>12</sub>]<sup>2</sup><sup>−</sup>. We study the binding of the noble gas atoms He, Ne, Kr, Ar and Xe to [B<sub>12</sub>X<sub>11</sub>]<sup>−</sup> with ligands X = F, Cl, Br, I, CN. While He cannot be captured by these clusters and Ne only binds at low temperatures, the complexes with the heavier Kr, Ar and Xe show appreciable complexation energies and exceed 1 eV at room temperature in the case of [B<sub>12</sub>(CN)<sub>11</sub>Xe]<sup>−</sup>. For the latter three noble gases, we observe a significant charge transfer from the Ng to the icosahedral B<sub>12</sub> cage.


2021 ◽  
Author(s):  
Kevin Wöhner ◽  
Toshiki Wulf ◽  
Nina Vankova ◽  
Thomas Heine

We systematically explore the stability and properties of [B<sub>12</sub>X<sub>11</sub>Ng]<sup>−</sup> adducts resulting from the capture reaction of noble gas atoms (Ng) by anionic [B<sub>12</sub>X<sub>11</sub>]<sup>−</sup> clusters in the ion trap. [B<sub>12</sub>X<sub>11</sub>]<sup>−</sup> can be obtained by stripping one X<sup>−</sup> ligand off the icosahedral <i>closo</i>-dodecaborate dianion [B<sub>12</sub>X<sub>12</sub>]<sup>2</sup><sup>−</sup>. We study the binding of the noble gas atoms He, Ne, Kr, Ar and Xe to [B<sub>12</sub>X<sub>11</sub>]<sup>−</sup> with ligands X = F, Cl, Br, I, CN. While He cannot be captured by these clusters and Ne only binds at low temperatures, the complexes with the heavier Kr, Ar and Xe show appreciable complexation energies and exceed 1 eV at room temperature in the case of [B<sub>12</sub>(CN)<sub>11</sub>Xe]<sup>−</sup>. For the latter three noble gases, we observe a significant charge transfer from the Ng to the icosahedral B<sub>12</sub> cage.


1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.


2013 ◽  
Vol 44 (5) ◽  
pp. 311-319 ◽  
Author(s):  
Marco Brambilla ◽  
David A. Butz

Two studies examined the impact of macrolevel symbolic threat on intergroup attitudes. In Study 1 (N = 71), participants exposed to a macrosymbolic threat (vs. nonsymbolic threat and neutral topic) reported less support toward social policies concerning gay men, an outgroup whose stereotypes implies a threat to values, but not toward welfare recipients, a social group whose stereotypes do not imply a threat to values. Study 2 (N = 78) showed that, whereas macrolevel symbolic threat led to less favorable attitudes toward gay men, macroeconomic threat led to less favorable attitudes toward Asians, an outgroup whose stereotypes imply an economic threat. These findings are discussed in terms of their implications for understanding the role of a general climate of threat in shaping intergroup attitudes.


Sign in / Sign up

Export Citation Format

Share Document