Self-powered electrocatalytic ammonia synthesis directly from air as driven by dual triboelectric nanogenerators

2020 ◽  
Vol 13 (8) ◽  
pp. 2450-2458 ◽  
Author(s):  
Kai Han ◽  
Jianjun Luo ◽  
Yawei Feng ◽  
Liang Xu ◽  
Wei Tang ◽  
...  

Driven by dual triboelectric nanogenerators, nitrogen fixation from the air can proceed simultaneously with electrocatalytic reduction for self-powered ammonia synthesis.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kai Han ◽  
Jianjun Luo ◽  
Jian Chen ◽  
Baodong Chen ◽  
Liang Xu ◽  
...  

AbstractAmmonia synthesis using low-power consumption and eco-friendly methods has attracted increasing attention. Here, based on the Tesla turbine triboelectric nanogenerator (TENG), we designed a simple and effective self-powered ammonia synthesis system by N2 discharge. Under the driving of the simulated waste gas, the Tesla turbine TENG showed high rotation speed and high output. In addition, the performance of two Tesla turbine TENGs with different gas path connections was systematically investigated and discussed. A controllable series-parallel connection with the control of gas supply time was also proposed. Taking advantage of the intrinsic high voltage, corona discharge in a N2 atmosphere was simply realized by a Tesla turbine TENG. With the flow of N2, the generated high-energy plasma can immediately react with water molecules to directly produce ammonia. The self-powered system achieved a yield of 2.14 μg h−1 (0.126 μmol h−1) under ambient conditions, showing great potential for large-scale synthesis.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2951
Author(s):  
Yangming Liu ◽  
Jialin Liu ◽  
Lufeng Che

Triboelectric nanogenerators (TENGs) have excellent properties in harvesting tiny environmental energy and self-powered sensor systems with extensive application prospects. Here, we report a high sensitivity self-powered wind speed sensor based on triboelectric nanogenerators (TENGs). The sensor consists of the upper and lower two identical TENGs. The output electrical signal of each TENG can be used to detect wind speed so that we can make sure that the measurement is correct by two TENGs. We study the influence of different geometrical parameters on its sensitivity and then select a set of parameters with a relatively good output electrical signal. The sensitivity of the wind speed sensor with this set of parameters is 1.79 μA/(m/s) under a wind speed range from 15 m/s to 25 m/s. The sensor can light 50 LEDs at the wind speed of 15 m/s. This work not only advances the development of self-powered wind sensor systems but also promotes the application of wind speed sensing.


2021 ◽  
Vol 188 (8) ◽  
Author(s):  
Faezeh Ejehi ◽  
Raheleh Mohammadpour ◽  
Elham Asadian ◽  
Somayeh Fardindoost ◽  
Pezhman Sasanpour

2021 ◽  
pp. 2100975
Author(s):  
Xiao Xiao ◽  
Xiao Xiao ◽  
Ardo Nashalian ◽  
Alberto Libanori ◽  
Yunsheng Fang ◽  
...  

Author(s):  
Araz Rajabi-Abhari ◽  
Jong-Nam Kim ◽  
Jeehee Lee ◽  
Rassoul Tabassian ◽  
Manmatha Mahato ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 337
Author(s):  
Navneet Soin ◽  
Sam J. Fishlock ◽  
Colin Kelsey ◽  
Suzanne Smith

The use of rapid point-of-care (PoC) diagnostics in conjunction with physiological signal monitoring has seen tremendous progress in their availability and uptake, particularly in low- and middle-income countries (LMICs). However, to truly overcome infrastructural and resource constraints, there is an urgent need for self-powered devices which can enable on-demand and/or continuous monitoring of patients. The past decade has seen the rapid rise of triboelectric nanogenerators (TENGs) as the choice for high-efficiency energy harvesting for developing self-powered systems as well as for use as sensors. This review provides an overview of the current state of the art of such wearable sensors and end-to-end solutions for physiological and biomarker monitoring. We further discuss the current constraints and bottlenecks of these devices and systems and provide an outlook on the development of TENG-enabled PoC/monitoring devices that could eventually meet criteria formulated specifically for use in LMICs.


2020 ◽  
Vol 30 (16) ◽  
pp. 1910723 ◽  
Author(s):  
Xingyi Dai ◽  
Long‐Biao Huang ◽  
Yuzhang Du ◽  
Jiancheng Han ◽  
Qiuqun Zheng ◽  
...  

Author(s):  
Xu Liu ◽  
Xiao-Rong Sun ◽  
Chen Luo ◽  
Hong-zhi Ma ◽  
Hua Yu ◽  
...  

The development of self-powered technology in nano energy puts forward higher requirements for triboelectric nanogenerators (TENGs), in which it is necessary to further improve output performance to broaden the scope...


Nano Energy ◽  
2019 ◽  
Vol 55 ◽  
pp. 305-315 ◽  
Author(s):  
Bhaskar Dudem ◽  
Anki Reddy Mule ◽  
Harishkumar Reddy Patnam ◽  
Jae Su Yu

Sign in / Sign up

Export Citation Format

Share Document