Hydrogeochemical characterization in a possible carbon sink from shallow saline-alkaline groundwater in the eastern Hetao basin of Inner Mongolia in China

Author(s):  
Junxia Yu ◽  
Jiao Yan ◽  
Wenzhu Yang ◽  
Jie Yang ◽  
Lijia Liu

The question of how saline-alkaline groundwater can be used as a CO2 sink in arid saline-alkaline areas remains controversial. This study investigates the role of saline-alkaline groundwater as a CO2...

2021 ◽  
Vol 11 (10) ◽  
pp. 1674-1680
Author(s):  
Yuan Yao ◽  
Jun Yuan ◽  
Yanju Ma ◽  
Runxiu Zhu ◽  
Yong Ma

Hyperuricemia is closely related to acute ischemic stroke (AIS). In our study, we investigated the pattern of miRNA-155-5p and miRNA-124-5p expressions along with its clinical application in AIS and hyperuricemia patients and in a hyperuricemia rat model by RT-qPCR. The hyperuricemia rat model was established, and we found that the levels of miRNA-155-5p and miRNA-124-5p were increased in the serum, brain and kidney tissues compared with those in the normal rats. We proved that the levels of miRNA-155-5p and miRNA-124-5p were also elevated in AIS, hyperuricemia and AIS accompanied with hyperuricemia patients enrolled from the department of neurology in Inner Mongolia People’s Hospital (IMPH). The miRNA-155-5p and miRNA-124-5p were mainly associated with neuronal apoptosis, cerebral vasospasm, neuron projection, neuron projection morphogenesis, neuron differentiation and exocytosis. The above results might provide clues for the study the pathogenesis of AIS and hyperuricemia.


2012 ◽  
Vol 9 (10) ◽  
pp. 13713-13742 ◽  
Author(s):  
B. R. K. Runkle ◽  
T. Sachs ◽  
C. Wille ◽  
E.-M. Pfeiffer ◽  
L. Kutzbach

Abstract. This paper evaluates the relative contribution of light and temperature on net ecosystem CO2 uptake during the 2006 growing season in a~polygonal tundra ecosystem in the Lena River Delta in Northern Siberia (72°22´ N, 126°30´ E). We demonstrate that the timing of warm periods may be an important determinant of the magnitude of the ecosystem's carbon sink function, as they drive temperature-induced changes in respiration. Hot spells during the early portion of the growing season are shown to be more influential in creating mid-day surface-to-atmosphere net ecosystem CO2 exchange fluxes than those occurring later in the season. In this work we also develop and present a bulk flux partition model to better account for tundra plant physiology and the specific light conditions of the arctic region that preclude the successful use of traditional partition methods that derive a respiration-temperature relationship from all night-time data. Night-time, growing season measurements are rare during the arctic summer, however, so the new method allows for temporal variation in the parameters describing both ecosystem respiration and gross uptake by fitting both processes at the same time. Much of the apparent temperature sensitivity of respiration seen in the traditional partition method is revealed in the new method to reflect seasonal changes in basal respiration rates. Understanding and quantifying the flux partition is an essential precursor to describing links between assimilation and respiration at different time scales, as it allows a more confident evaluation of measured net exchange over a broader range of environmental conditions. The growing season CO2 sink estimated by this study is similar to those reported previously for this site, and is substantial enough to withstand the long, low-level respiratory CO2 release during the rest of the year to maintain the site's CO2 sink function on an annual basis.


2017 ◽  
Vol 40 (3) ◽  
pp. 209-215
Author(s):  
Mohommad Shahid ◽  
◽  
L.K. Rai ◽  

Paris Agreement recognized the role of forests as carbon sink for mitigation of climate change, under Article 5 as REDD+, i.e., reducing emissions from deforestation and forest degradation and role of conservation, sustainable management of forests and enhancement of forest carbon stocks. Forest cover change analysis was done between two time periods 2005 and 2015 to assess the forest degradation. Carbon sequestration potential of the forests of Sikkim for mitigating climate change is also estimated. Benefits of implementing of REDD+ in Sikkim involving local communities as stakeholder to conserve and sustainably manage the forest is assessed. Gaps and challenges faced by the stakeholder in implementing REDD+ at project level are also highlighted.


2021 ◽  
Author(s):  
Maddalena del Gallo ◽  
Amedeo Mignini ◽  
Giulio Moretti ◽  
Marika Pellegrini ◽  
Paola Cacchio

<p>CO<sub>2</sub> emissions triggered by anthropogenic and natural activities contribute to climate change, one of the current environmental threats of public and scientific concern. At present, microbially-induced biomineralization of CO<sub>2</sub> by calcium carbonate (CaCO<sub>3</sub>) is one of the highly topical study subjects as carbon stabilization process. In the present study we focused our attention on the calcifying bacteria of “living rocks”. The origin of these concretions, composed by a silicate skeleton of quartz and feldspars, merged by massive carbonate concrete, has so far been recognized as abiotic. Within this study we investigated the role of calcifying bacteria in their formation of these concretions and we isolated and characterized the species with CaCO<sub>3</sub> precipitation abilities. Concretions were sampled in Romania (Trovant) and Italy (Sibari and Rome). Samples were first analyzed for their culturable microflora (i.e. isolation, CaCO<sub>3 </sub>precipitation capability and molecular characterization). Then, in vitro regeneration tests were carried out to confirm the contribution of bacteria in the formation of these erratic masses. Moreover, natural samples and bioliths regenerated in vitro were (i) observed and analyzed by scanning electron microscopy (SEM-EDS) and (ii) characterized at molecular level by DNA extraction and 16S rRNA analysis (V3-V4 regions). By isolating and characterizing the culturable microflora, we obtained 19 calcifying isolates, with different morphological, bacteriological and mineral precipitation properties. These evidences have given a first relevant contribution for the definition of the biotic role to the formation of these concretions. These evidences were confirmed by the efficient in vitro regeneration and SEM-EDS analysis. The molecular identification of the isolates and the comparison of the data obtained from the Illumina sequencing with those present in the literature, allowed us to hypothesize the genera that most likely contributed to the formation of these concretions. The results obtained provide a good scientific basis for further studies, which should be directed towards the use of isolates in studies of environmental and socio-economic relevance. Several studies demonstrate that microbially mediated biomineralization has the potential to capture and sequester carbon. Calcium carbonate, is a stable pool of carbon and is an effective sealant to prevent CO<sub>2</sub> release back into the atmosphere.</p>


2017 ◽  
Vol 7 (4) ◽  
pp. 98
Author(s):  
Juan Du

The traditional English teaching method has gradually been replaced by new teaching methods in English class. Situational Language Teaching Method is a way to activate the teaching of language knowledge through the design of authentic and concrete situation. A survey is carried out in Inner Mongolia University for Nationalites. It investigates the practical application of Situational Language Teaching Method among Mongolian English majors in this university. Through the analysis of the questionnaire results, the paper reveals the obstacles existing in the application of the method, namely: passive participation due to improper text parsing; weakening role of teachers; and ineffective transfer among language, image and meaning. At the same time, it puts forward appropriate strategies to solve the problems during the application of SLT to Mongolian English majors. 


2019 ◽  
Vol 7 (4) ◽  
pp. 786-797 ◽  
Author(s):  
Zhimian Cao ◽  
Wei Yang ◽  
Yangyang Zhao ◽  
Xianghui Guo ◽  
Zhiqiang Yin ◽  
...  

Abstract Global coastal oceans as a whole represent an important carbon sink but, due to high spatial–temporal variability, a mechanistic conceptualization of the coastal carbon cycle is still under development, hindering the modelling and inclusion of coastal carbon in Earth System Models. Although temperature is considered an important control of sea surface pCO2, we show that the latitudinal distribution of global coastal surface pCO2 does not match that of temperature, and its inter-seasonal changes are substantially regulated by non-thermal factors such as water mass mixing and net primary production. These processes operate in both ocean-dominated and river-dominated margins, with carbon and nutrients sourced from the open ocean and land, respectively. These can be conceptualized by a semi-analytical framework that assesses the consumption of dissolved inorganic carbon relative to nutrients, to determine how a coastal system is a CO2 source or sink. The framework also finds utility in accounting for additional nutrients in organic forms and testing hypotheses such as using Redfield stoichiometry, and is therefore an essential step toward comprehensively understanding and modelling the role of the coastal ocean in the global carbon cycle.


2020 ◽  
Vol 26 (4) ◽  
pp. 2642-2655 ◽  
Author(s):  
Zeli Tan ◽  
L. Ruby Leung ◽  
Hong‐Yi Li ◽  
Teklu Tesfa ◽  
Qing Zhu ◽  
...  

2012 ◽  
Vol 524-527 ◽  
pp. 2562-2565
Author(s):  
Na Zhao ◽  
Yang Zhuang ◽  
Ling Jin ◽  
Qiqige Wuyun ◽  
Ji Zhao

Durban climate conference decided to continue the second commitment period of the Kyoto protocol, and announced to start Green Climate Fund, which provided great opportunities for the rapid development of the carbon trading market. The problem of grassland carbon sink has already received more and more attention from the countries all over the world, and the grassland carbon sink potential and value also got more attention from people. Xilinhot has abundant grassland resources and it is one of the main grasslands in Inner Mongolia. The huge carbon sink has important ecological function and also contains huge economic benefits. Based on the principle of additionality, this paper proposed the method of calculating the carbon sink potential of grasslands, and calculated and analyzed the carbon sink potential of degraded grasslands in Xilinhot. The results indicated that the existing huge carbon sink potential of Xilinhot grasslands was 0.733-0.869Tg C/a. According to the carbon sequestration cost price of afforestation cost method (260.9 RMB yuan / ton C), we estimated the value of grassland carbon sink was 191.2 - 226.7 million RMB yuan / year in Xilinhot.


Sign in / Sign up

Export Citation Format

Share Document