Efficient palladium catalysis for the upgrading of itaconic and levulinic acid to 2-pyrrolidones followed by their vinylation into value-added monomers

2020 ◽  
Vol 22 (14) ◽  
pp. 4532-4540
Author(s):  
Yannik Louven ◽  
Moritz O. Haus ◽  
Marc Konrad ◽  
Jan P. Hofmann ◽  
Regina Palkovits

Bio-based monomers are produced in a two-step process starting from common platform chemicals. The heterogeneously catalyzed reduction of bio-based acids into 2-pyrrolidones makes for a promising drop-in technology for the industrial NVP production.

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1234
Author(s):  
Zhiwei Jiang ◽  
Di Hu ◽  
Zhiyue Zhao ◽  
Zixiao Yi ◽  
Zuo Chen ◽  
...  

Efficient conversion of renewable biomass into value-added chemicals and biofuels is regarded as an alternative route to reduce our high dependence on fossil resources and the associated environmental issues. In this context, biomass-based furfural and levulinic acid (LA) platform chemicals are frequently utilized to synthesize various valuable chemicals and biofuels. In this review, the reaction mechanism and catalytic system developed for the generation of furfural and levulinic acid are summarized and compared. Special efforts are focused on the different catalytic systems for the synthesis of furfural and levulinic acid. The corresponding challenges and outlooks are also observed.


2017 ◽  
Vol 53 (20) ◽  
pp. 2938-2941 ◽  
Author(s):  
Xun Hu ◽  
Shengjuan Jiang ◽  
Liping Wu ◽  
Shuai Wang ◽  
Chun-Zhu Li

Via acid catalysis in dimethoxymethane/methanol, both C5 sugars and C6 sugars, derived from hemicellulose and cellulose, could be simultaneously converted into levulinic acid/ester, the platform chemicals for manufacturing value-added chemicals and biofuels.


2021 ◽  
Vol 55 (3-4) ◽  
pp. 207-222
Author(s):  
RAMANDEEP KAUR ◽  
PUNEET KAUR

"The potential of non-edible lignocellulosic biomass paves the path to sustainable economy. A large number of valueadded products have been synthesized by the fractionation of the major components of biomass, i.e. cellulose, hemicelluloses and lignin. Cellulose, the most abundant biopolymer on earth, serves as a starting material for the synthesis of various platform chemicals, such as sorbitol, 5- hydroxylmethylfurfural (HMF), dimethylfuran and levulinic acid. Hydrogels and aerogels fabricated from cellulose, modified cellulose or nanocellulose have proved valuable in a wide range of such as biomedical, food and technological applications. Cellulose-based polymers or bioplastics also emerged as an alternative to fossil fuel-based polymers. In this review, chemical paths to valorize plant cellulose for producing various value-added products have been discussed. The major challenge for valorization is the development of novel and green synthesis methods with simultaneous focus on an integrated approach."


2019 ◽  
Vol 21 (23) ◽  
pp. 6268-6276 ◽  
Author(s):  
Moritz Otto Haus ◽  
Yannik Louven ◽  
Regina Palkovits

Bio-based monomers are synthesized in a two-step process starting from common platform chemicals. The featured sequence of heterogeneously-catalyzed reduction and gas phase dehydration makes for a promising alternative to traditional Reppe chemistry.


2021 ◽  
Author(s):  
Liang Jiang ◽  
Guangyue Xu ◽  
Yao Fu

The conversion of levulinic acid (LA) to γ-valerolactone (GVL) is one of the most important reactions from biomass-derived platform chemicals to value-added chemicals. In this work, nitrogen-doped carbon was introduced...


Author(s):  
Abhinav Kumar ◽  
Rajaram Bal ◽  
Rajendra Srivastava

Furfural (FAL) and 5-hydroxymethylfurfural (HMF) are important and sustainable platform chemicals. They are produced from lignocellulose biomass and attract significant attention as precursors for producing value-added chemicals and fuels. The...


2021 ◽  
Vol 405 ◽  
pp. 126705
Author(s):  
Javier Remón ◽  
Marina Casales ◽  
Jesús Gracia ◽  
María S. Callén ◽  
José Luis Pinilla ◽  
...  

2018 ◽  
Vol 42 (2) ◽  
pp. 1423-1430 ◽  
Author(s):  
Firdaus Parveen ◽  
Tanmoy Patra ◽  
Sreedevi Upadhyayula

The catalytic conversion of biomass-derived carbohydrates to value-added chemicals, such as 5-hydroxymethylfurfural, levulinic acid, and formic acid, is a commercially important reaction and requires the use of both Lewis and Bronsted acids.


2021 ◽  
Vol 3 ◽  
Author(s):  
Huan Chen ◽  
Kun Wan ◽  
Fangjuan Zheng ◽  
Zhuo Zhang ◽  
Hongyu Zhang ◽  
...  

In response to the less accessible fossil resources and deteriorating environmental problems, catalytic conversion of the abundant and renewable lignocellulosic biomass to replace fossil resources for the production of value-added chemicals and fuels is of great importance. Depolymerization of carbohydrate and its derivatives can obtain a series of C5-C6 monosaccharides (e.g., glucose and xylose) and their derived platform compounds (e.g., HMF and furfural). Selective transformation of lignocellulose using sustainable solar energy via photocatalysis has attract broad interest from a growing scientific community. The unique photogenerated reactive species (e.g., h+, e−, •OH, •O2−, and 1O2), novel reaction pathways as well as the mild reaction conditions make photocatalysis a “dream reaction.” This review is aimed to provide an overview of the up-to-date contributions achieved in the selective photocatalytic transformation of carbohydrate and its derivatives. Photocatalytic methods, properties and merits of different catalytic systems are well summarized. We then put forward future perspective and challenges in this field.


Sign in / Sign up

Export Citation Format

Share Document