A cysteine derivative-enabled ultrafast thiol–ene reaction for scalable synthesis of a fully bio-based internal emulsifier for high-toughness waterborne polyurethanes

2020 ◽  
Vol 22 (17) ◽  
pp. 5722-5729 ◽  
Author(s):  
Xiao Wang ◽  
Haiyan Liang ◽  
Jizhou Jiang ◽  
Qingwen Wang ◽  
Ying Luo ◽  
...  

Fully bio-based internal emulsifiers were synthesized via flow chemistry with a productivity of 360.0 g h−1; they were used as a replacement of DMBA and DMPA to prepare WPUs with superior thermophysical and mechanical properties.

2019 ◽  
Author(s):  
Merlin Kleoff ◽  
Johannes Schwan ◽  
Lisa Boeser ◽  
Bence Hartmayer ◽  
Mathias Christmann ◽  
...  

A scalable access to functionalized 1,1’- and 1,2-ferrocenyl azides has been realized in flow. By halogen‒lithium exchange of ferrocenyl halides and subsequent reaction with tosyl azide, a variety of functionalized ferrocenyl azides was obtained in high yields. To allow a scalable preparation of these potentially explosive compounds, an efficient flow protocol was developed accelerating the reaction time to minutes and circumventing accumulation of potentially hazardous intermediates. Switching from homogeneous to triphasic flow amidst process was key for handling a heterogeneous reaction mixture formed after a heated reactor section. The corresponding and synthetically versatile ferrocenyl amines were then prepared by a reliable reduction process.


Author(s):  
Jessica Orrego‐Hernández ◽  
Helen Hölzel ◽  
Maria Quant ◽  
Zhihang Wang ◽  
Kasper Moth‐Poulsen

2018 ◽  
Vol 22 (7) ◽  
pp. 2287-2301
Author(s):  
Mei-Chen Lin ◽  
Jia-Horng Lin ◽  
Jan-Yi Lin ◽  
Ting An Lin ◽  
Ching-Wen Lou

This study aims to improve the mechanical properties, stabilized structures, and light weight plastic packaging materials to realize diverse applications. A sheet extrusion machine is used to fabricate sandwich-structured composites, which are composed of two polymer cover sheets and a nonwoven interlayer. The samples are prepared in two batches with different cover sheets: thermoplastic polyurethane and polypropylene. Moreover, low-melting-point polyester (LMPET) fibers and Kevlar fibers are fabricated into a LMPET/Kevlar nonwoven interlayer. The laminated composites are evaluated in terms of morphologies, mechanical properties, combustion rates, and thermal behavior. Kevlar fibers are flame resistant and mechanically strong. LMPET fibers promote the interfacial bonding between layers. Thus, the laminated composites are good candidates as packaging materials, and they can be made with rigid or soft materials, depending on specified requirements. Rigid materials can provide higher strengths, and the distribution of fibers thus helps the PP-based laminated composites to obtain higher crystal stability. Moreover, using TPU with flexibility contributes to high extensibility, which grants the laminated composites with high toughness, light weight, and low restriction against the morphology. Such manufacturing is also efficient and economical, thereby satisfying the requirements of plastic packaging materials.


1990 ◽  
Vol 211 ◽  
Author(s):  
C. K. Park ◽  
M. R. Silsbee ◽  
D. M. Roy

AbstractMacro-Defect-Free (MDF) materials are cement-polymer composites exhibiting high flexural strengths and high toughness (for cement based systems). The incorporation of fibers into MDF composites has been found to offer the possibility of increasing both the ultimate flexural strength and toughness of MDF materials prepared using an ordinary portland cement-polyacrylamide matrix.This paper examined the effect of fiber type and fine particles as a packing filler on the resulting mechanical properties. The incorporation of non-traditional materials (for MDF) into the MDF matrix is also discussed.


2013 ◽  
Vol 130 (3) ◽  
pp. 1736-1742 ◽  
Author(s):  
Jun Liu ◽  
Hai-Feng Liu ◽  
Li Deng ◽  
Bing Liao ◽  
Qing-Xiang Guo

2015 ◽  
Vol 809-810 ◽  
pp. 437-442
Author(s):  
Jacek Górka ◽  
Michał Miłoszewski

4330V is a high strength, high toughness, heat treatable low alloy steel for application in the oil, gas and aerospace industries. It is typically used for large diameter drilling parts where high toughness and strength are required. The research describes the effect of preheat temperature, interpass temperature, heat input, and post weld heat treatment on strength, hardness, toughness, and changes to microstructure in the weld joint. Welding with the lower heat input and no post weld heat treatment resulted in optimal mechanical properties in the weld metal. Austempering at 400 °C resulted in optimal mechanical properties in the HAZ. Increasing preheat and interpass temperature from 340 °C to 420 °C did not improve Charpy V-notch values or ultimate tensile strength in the weld metal or heat affected zones. The higher temperature increased the width of the heat affected zone. Austempering at 400 °C reduced HAZ hardness to a level comparable to the base metal. Both tempering and austempering at 400 °C for 10 hours reduced toughness in the weld metal.


Author(s):  
Jessica Orrego-Hernández ◽  
Helen Hölzel ◽  
Maria Quant ◽  
Zhihang Wang ◽  
Kasper Moth-Poulsen

2003 ◽  
Vol 2003 (0) ◽  
pp. 127-128
Author(s):  
Makoto KIKUCHI ◽  
Yoshinobu MOTOHASHI ◽  
Stefanus HARJO ◽  
Takaaki SAKUMA ◽  
Taijyu SHIBATA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document