Plastic packaging materials of laminated composites made of polymer cover sheets and a nonwoven interlayer

2018 ◽  
Vol 22 (7) ◽  
pp. 2287-2301
Author(s):  
Mei-Chen Lin ◽  
Jia-Horng Lin ◽  
Jan-Yi Lin ◽  
Ting An Lin ◽  
Ching-Wen Lou

This study aims to improve the mechanical properties, stabilized structures, and light weight plastic packaging materials to realize diverse applications. A sheet extrusion machine is used to fabricate sandwich-structured composites, which are composed of two polymer cover sheets and a nonwoven interlayer. The samples are prepared in two batches with different cover sheets: thermoplastic polyurethane and polypropylene. Moreover, low-melting-point polyester (LMPET) fibers and Kevlar fibers are fabricated into a LMPET/Kevlar nonwoven interlayer. The laminated composites are evaluated in terms of morphologies, mechanical properties, combustion rates, and thermal behavior. Kevlar fibers are flame resistant and mechanically strong. LMPET fibers promote the interfacial bonding between layers. Thus, the laminated composites are good candidates as packaging materials, and they can be made with rigid or soft materials, depending on specified requirements. Rigid materials can provide higher strengths, and the distribution of fibers thus helps the PP-based laminated composites to obtain higher crystal stability. Moreover, using TPU with flexibility contributes to high extensibility, which grants the laminated composites with high toughness, light weight, and low restriction against the morphology. Such manufacturing is also efficient and economical, thereby satisfying the requirements of plastic packaging materials.

2017 ◽  
pp. 103-122
Author(s):  
Laszlo Horvath ◽  
Byungjin Min ◽  
Young T. Kim

Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1287 ◽  
Author(s):  
Sandra Lepak-Kuc ◽  
Bartłomiej Podsiadły ◽  
Andrzej Skalski ◽  
Daniel Janczak ◽  
Małgorzata Jakubowska ◽  
...  

The following paper presents a simple, inexpensive and scalable method of production of carbon nanotube-polyurethane elastomer composite. The new method enables the formation of fibers with 40% w/w of nanotubes in a polymer. Thanks to the 8 times higher content of nanotubes than previously reported for such composites, over an order of magnitude higher electrical conductivity is also observed. The composite fibers are highly elastic and both their electrical and mechanical properties may be easily controlled by changing the nanotubes content in the composite. It is shown that these composite fibers may be easily integrated with traditional textiles by sewing or ironing. However, taking into account their light-weight, high conductivity, flexibility and easiness of molding it may be expected that their potential applications are not limited to the smart textiles industry.


2016 ◽  
Vol 852 ◽  
pp. 657-662
Author(s):  
Xiao Li Yang ◽  
Huai Qing Wang ◽  
Le Lv ◽  
Sheng Lei Yuan ◽  
Jian Cai ◽  
...  

The blends of ethylene vinyl acetate (EVA) and thermoplastic polyurethane (TPU) were prepared by means of blending. The mechanical properties of EVA/TPU blends and thermal stability of the extrudates were investigated. The results show that the toughness of EVA/TPU has been improved after adding TPU into EVA, and doesn’t affect the thermal stability of material.


2018 ◽  
Vol 22 (3) ◽  
pp. 689-701 ◽  
Author(s):  
Mei-Chen Lin ◽  
Jia-Horng Lin ◽  
Jan-Yi Lin ◽  
Ting An Lin ◽  
Ching-Wen Lou

Fiber-reinforced polymer composites are commonly used in different fields because the evenly distributed fibers in polymer can efficiently transmit the load of a force and mechanically reinforce the polymer matrices. This study proposes producing composite sandwiches using thermoplastic polyurethane sheets as the top and bottom layers and a polypropylene/Kevlar nonwoven fabric the interlayer. Thermoplastic polyurethane sheets and a polypropylene/Kevlar nonwoven fabric are combined using the sheet extrusion method, during which the polypropylene staple fibers are melted and firmly bond the thermoplastic polyurethane sheets. The mechanical properties, thermal behavior, and surface morphology of composite sandwiches are evaluated, examining the influence of parameters. The test results show that the composite sandwiches are mechanically reinforced as a result of using the nonwoven covers. Moreover, the improved interfacial bonding between the cover layers and the interlayer inhibits delamination, and the stabilized structure subsequently decreases the level of combustion which is in conformity of the differential scanning calorimetry results. The manufacturing is creative and efficient due to one-step shaping, creating a refined composite sandwich with good mechanical properties and combustion resistance.


1977 ◽  
Vol 9 (3) ◽  
pp. 299-311 ◽  
Author(s):  
K. B. Wischmann ◽  
G. L. Cessac ◽  
J. G. Curro

Two castable thermoplastic polyurethane formulations have been developed for use as removable electronics packaging materials. The first formulation would be employed in situations where some elastomeric properties are desired. Mechanical properties for this formulation are: tensile strength 1675 psi, elongation 480%, and modulus 2.2 X 104 psi. The second formulation more closely simulates an epoxy resin and the mechanical properties are: tensile strength 6040 psi, elongation 6.5%, and modulus 2.8 X 105 psi. Both casting resins can be filled (e.g., with Al2O3) which reduces the coefficient of thermal expansion (~ 80 X 10-6 to ~ 40 X 10-6/°C) and susceptibility to creep. The two formulations are soluble in polar organic solvents such as dimethylformamide and tetrahydrofuran. Both formulations were synthesized in bulk and based on reaction rate studies, they exhibit a diffusion controlled process in the latter stages of reaction.


2012 ◽  
Vol 616-618 ◽  
pp. 1751-1755
Author(s):  
Wen Ming Ren ◽  
Pei Fang Cheng

In order to minimize the environmental pollution attributed by traditional plastic packaging material with cushioning performance, a new biodegradable packaging material with cushioning performance was created in the present research. Being made from potato starch, fiber and PVA as well as foaming agent the new product was prepared by a measure of pressure-molding. The impact of each of the four components on the mechanical properties of the product was studied and the optimal formula was determined by a measure of orthogonal test. The results showed that a formula of potato starch 100g, fiber 30g, PVA 40gand foaming agent AC 0.80g gave the product the better mechanical property where tensile strength reached 1.93MPa. Comparing with traditional foamed plastic packaging materials the extension strength of starch-fiber based new product showed 60%-180% higher than EPS’s and 50%-150%higher than EPE’s.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2588
Author(s):  
Mansuri M. Tosif ◽  
Agnieszka Najda ◽  
Aarti Bains ◽  
Grażyna Zawiślak ◽  
Grzegorz Maj ◽  
...  

In recent years, scientists have focused on research to replace petroleum-based components plastics, in an eco-friendly and cost-effective manner, with plant-derived biopolymers offering suitable mechanical properties. Moreover, due to high environmental pollution, global warming, and the foreseen shortage of oil supplies, the quest for the formulation of biobased, non-toxic, biocompatible, and biodegradable polymer films is still emerging. Several biopolymers from varied natural resources such as starch, cellulose, gums, agar, milk, cereal, and legume proteins have been used as eco-friendly packaging materials for the substitute of non-biodegradable petroleum-based plastic-based packaging materials. Among all biopolymers, starch is an edible carbohydrate complex, composed of a linear polymer, amylose, and amylopectin. They have usually been considered as a favorite choice of material for food packaging applications due to their excellent forming ability, low cost, and environmental compatibility. Although the film prepared from bio-polymer materials improves the shelf life of commodities by protecting them against interior and exterior factors, suitable barrier properties are impossible to attain with single polymeric packaging material. Therefore, the properties of edible films can be modified based on the hydrophobic–hydrophilic qualities of biomolecules. Certain chemical modifications of starch have been performed; however, the chemical residues may impart toxicity in the food commodity. Therefore, in such cases, several plant-derived polymeric combinations could be used as an effective binary blend of the polymer to improve the mechanical and barrier properties of packaging film. Recently, scientists have shown their great interest in underutilized plant-derived mucilage to synthesize biodegradable packaging material with desirable properties. Mucilage has a great potential to produce a stable polymeric network that confines starch granules that delay the release of amylose, improving the mechanical property of films. Therefore, the proposed review article is emphasized on the utilization of a blend of source and plant-derived mucilage for the synthesis of biodegradable packaging film. Herein, the synthesis process, characterization, mechanical properties, functional properties, and application of starch and mucilage-based film are discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document