scholarly journals Vibrio cholerae FeoB hydrolyzes ATP and GTP in vitro in the absence of stimulatory factors

Metallomics ◽  
2020 ◽  
Author(s):  
Camilo Gómez-Garzón ◽  
Shelley M. Payne

V. cholerae FeoA, FeoB, and FeoC work at a 1 : 1 : 1 molar ratio to mediate ferrous iron uptake through a mechanism driven by FeoB NTP hydrolysis without requiring stimulatory factors.

2008 ◽  
Vol 190 (17) ◽  
pp. 5953-5962 ◽  
Author(s):  
Alexandra R. Mey ◽  
Elizabeth E. Wyckoff ◽  
Lindsey A. Hoover ◽  
Carolyn R. Fisher ◽  
Shelley M. Payne

ABSTRACT Vibrio cholerae uses a variety of strategies for obtaining iron in its diverse environments. In this study we report the identification of a novel iron utilization protein in V. cholerae, VciB. The vciB gene and its linked gene, vciA, were isolated in a screen for V. cholerae genes that permitted growth of an Escherichia coli siderophore mutant in low-iron medium. The vciAB operon encodes a predicted TonB-dependent outer membrane receptor, VciA, and a putative inner membrane protein, VciB. VciB, but not VciA, was required for growth stimulation of E. coli and Shigella flexneri strains in low-iron medium. Consistent with these findings, TonB was not needed for VciB-mediated growth. No growth enhancement was seen when vciB was expressed in an E. coli or S. flexneri strain defective for the ferrous iron transporter Feo. Supplying the E. coli feo mutant with a plasmid encoding either E. coli or V. cholerae Feo, or the S. flexneri ferrous iron transport system Sit, restored VciB-mediated growth; however, no stimulation was seen when either of the ferric uptake systems V. cholerae Fbp and Haemophilus influenzae Hit was expressed. These data indicate that VciB functions by promoting iron uptake via a ferrous, but not ferric, iron transport system. VciB-dependent iron accumulation via Feo was demonstrated directly in iron transport assays using radiolabeled iron. A V. cholerae vciB mutant did not exhibit any growth defects in either in vitro or in vivo assays, possibly due to the presence of other systems with overlapping functions in this pathogen.


2013 ◽  
Vol 195 (21) ◽  
pp. 4826-4835 ◽  
Author(s):  
E. A. Weaver ◽  
E. E. Wyckoff ◽  
A. R. Mey ◽  
R. Morrison ◽  
S. M. Payne

Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2776
Author(s):  
Magalie Sabatier ◽  
Andreas Rytz ◽  
Joeska Husny ◽  
Stéphane Dubascoux ◽  
Marine Nicolas ◽  
...  

A new iron–casein complex (ICC) has been developed for iron (Fe) fortification of dairy matrices. The objective was to assess the impact of ascorbic acid (AA) on its in vitro bioavailability in comparison with ferrous sulfate (FeSO4) and ferric pyrophosphate (FePP). A simulated digestion coupled with the Caco-2 cell culture model was used in parallel with solubility and dissociation tests. Under diluted acidic conditions, the ICC was as soluble as FeSO4, but only part of the iron was found to dissociate from the caseins, indicating that the ICC was an iron chelate. The Caco-2 cell results in milk showed that the addition of AA (2:1 molar ratio) enhanced iron uptake from the ICCs and FeSO4 to a similar level (p = 0.582; p = 0.852) and to a significantly higher level than that from FePP (p < 0.01). This translated into a relative in vitro bioavailability to FeSO4 of 36% for FePP and 114 and 104% for the two ICCs. Similar results were obtained from water. Increasing the AA to iron molar ratio (4:1 molar ratio) had no additional effect on the ICCs and FePP. However, ICC absorption remained similar to that from FeSO4 (p = 0.666; p = 0.113), and was still significantly higher than that from FePP (p < 0.003). Therefore, even though iron from ICC does not fully dissociate under gastric digestion, iron uptake suggested that ICCs are absorbed to a similar amount as FeSO4 in the presence of AA and thus provide an excellent source of iron.


Author(s):  
Narendar D ◽  
Ettireddy S

The content of this investigation was to study the influence of β-cyclodextrin and hydroxy propyl-β-cyclodextrin complexation on enhancement of solubility and dissolution rate of isradipine. Based on preliminary phase solubility studies, solid complexes prepared by freeze drying method in 1:1 molar ratio were selected and characterized by DSC for confirmation of complex formation. Prepared solid dispersions were evaluated for drug content, solubility and in vitro dissolution. The physical stability of optimized formulation was studied at refrigerated and room temperature for 2 months. Solid state characterization of optimized complex performed by DSC and XRD studies.  Dissolution rate of isradipine was increased compared with pure drug and more with HP-β-CD inclusion complex than β-CD. DSC and XRD analyzes that drug was in amorphous form, when the drug was incorporated as isradipine β-CD and HP-β-CD inclusion complex. Stability studies resulted in low or no variations in the percentage of complexation efficiency suggesting good stability of molecular complexes. The results conclusively demonstrated that the enhancement of solubility and dissolution rate of isradipine by drug-cyclodextrin complexation was achieved.   


2008 ◽  
Vol 59 (6) ◽  
Author(s):  
Codruta Soica ◽  
Cristina A. Dehelean ◽  
Valentin Ordodi ◽  
Diana Antal ◽  
Vicentiu Vlaia

Birch bark contains important pentacyclic triterpens that determine an anticancer, anti-inflammatory and antiviral activity. The compounds can be extracted by simple procedures with organic solvents. The major problem of this type of triterpens is their low water solubility which can be increased by physical procedures like cyclodextrin complexation. The aim of present study was to analyse the products between birch bark extract and hydroxypropyl-g -cyclodextrin. Hydroxypropyl-g -cyclodextrin (HPGCD) was used as a host to improve its solubility in water, via inclusion complex formation. In order to obtain the inclusion complexes, 1:2 molar ratio and two preparation methods (physical mixing, kneading) were used. The inclusion complexes were analyzed by in vitro dissolution tests, thermal analysis and X-ray diffraction.


1984 ◽  
Vol 247 (3) ◽  
pp. G305-G310
Author(s):  
W. J. Kortz ◽  
J. R. Nashold ◽  
M. R. Greenfield ◽  
H. Hilderman ◽  
S. H. Quarfordt

The metabolism of double-labeled triglyceride in a synthetic emulsion was defined in an in vitro perfusion system of rat hind end and liver described previously [Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G106-G112, 1983]. The metabolism of [3H]glycerol-[14C]triolein was defined in the absence of added apoproteins and with additions of human CII and both CII and CIII. Without apoprotein, a pronounced lipolysis of the triglyceride was recognized by high concentrations of radiolabeled glycerol and free fatty acid in the perfusate. The removal of an aliquot of hind-end venous effluent 5 min after adding the labeled triglyceride emulsion to the arterial inflow demonstrated a brisk lipolysis of the substrate when incubated outside the perfusion system. The addition of CII protein to the emulsion before its introduction into the tandem system eliminated perfusate lipolysis, both within the perfusion system and in incubations of aliquots withdrawn from the system. Intravascular lipolysis was not seen with triglyceride emulsions containing both CII and CIH or when an aliquot of hind-end venous effluent was incubated with triglycerides that had not been exposed to the perfusion system. The intravascular lipolysis observed for the [14C]triglyceride added to the tandem system without apoproteins was associated with relatively greater recoveries of 14C-fatty acyl in liver, fat, and muscle and relatively greater recoveries of 14CO2 than when CII alone or both CII and CIII were added with the triglyceride. The addition of CIII to CII in a 1:1 molar ratio increased the recovery of 14C-fatty acyl in muscle and the recovery as 14CO2.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Ma ◽  
Jing Sun ◽  
Bo Li ◽  
Yang Feng ◽  
Yao Sun ◽  
...  

AbstractThe development of biomedical glues is an important, yet challenging task as seemingly mutually exclusive properties need to be combined in one material, i.e. strong adhesion and adaption to remodeling processes in healing tissue. Here, we report a biocompatible and biodegradable protein-based adhesive with high adhesion strengths. The maximum strength reaches 16.5 ± 2.2 MPa on hard substrates, which is comparable to that of commercial cyanoacrylate superglue and higher than other protein-based adhesives by at least one order of magnitude. Moreover, the strong adhesion on soft tissues qualifies the adhesive as biomedical glue outperforming some commercial products. Robust mechanical properties are realized without covalent bond formation during the adhesion process. A complex consisting of cationic supercharged polypeptides and anionic aromatic surfactants with lysine to surfactant molar ratio of 1:0.9 is driven by multiple supramolecular interactions enabling such strong adhesion. We demonstrate the glue’s robust performance in vitro and in vivo for cosmetic and hemostasis applications and accelerated wound healing by comparison to surgical wound closures.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 119
Author(s):  
Jamal Lasri ◽  
Matti Haukka ◽  
Hessa H. Al-Rasheed ◽  
Nael Abutaha ◽  
Ayman El-Faham ◽  
...  

The square planar complex [Pd(PT)Cl(H2O)]*H2O (HPT: 6-(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazine-2,4(1H,3H)-dione) was obtained by the reaction of 2-methoxy-4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazine (MBPT) pincer ligand with PdCl2 in a molar ratio (1:1) under thermal conditions and using acetone as a solvent. The reaction proceeded via C-N cleavage of one C-N moiety that connects the pyrazole and s-triazine combined with the hydrolysis of the O-CH3 group. The reaction of the chloride salt of its higher congener (PtCl2) gave [Pt(3,5-dimethyl-1H-pyrazole)2Cl2]. The crystal structure of [Pd(PT)Cl(H2O)]*H2O complex is stabilized by inter- and intra-molecular hydrogen bonding interactions. Hirshfeld analysis revealed that the H...H (34.6%), O...H (23.6%), and Cl...H (7.8%) interactions are the major contacts in the crystal. The charges at Pd, H2O, Cl and PT are changed to 0.4995, 0.2216, −0.4294 and −0.2917 instead of +2, 0, −1 and −1, respectively, using the MPW1PW91 method. [Pd(PT)Cl(H2O)]*H2O complex has almost equal activities against MDA-MB-231 and MCF-7 cell lines with IC50 of 38.3 µg/mL.


Sign in / Sign up

Export Citation Format

Share Document