Two-dimensional MoS2 nanosheet-modified oxygen defect-rich TiO2 nanoparticles for light emission and photocatalytic applications

2020 ◽  
Vol 44 (35) ◽  
pp. 14936-14946 ◽  
Author(s):  
Jaspal Singh ◽  
R. K. Soni

MoS2/TiO2 nanohybrids efficiently decompose organic pollutants under sunlight due to the combined effects of defect creation and hetero-junction formation.

2019 ◽  
Author(s):  
Ayesha Tariq ◽  
M. Abdullah Iqbal ◽  
S. Irfan Ali ◽  
Muhammad Z. Iqbal ◽  
Deji Akinwande ◽  
...  

<p>Nanohybrids, made up of Bismuth ferrites/Carbon allotropes, are extensively used in photocatalytic applications nowadays. Our work proposes a nanohybrid system composed of Bismuth ferrite nanoparticles with two-dimensional (2D) MXene sheets namely, the BiFeO<sub>3</sub> (BFO)/Ti<sub>3</sub>C<sub>2</sub> (MXene) nanohybrid for enhanced photocatalytic activity. We have fabricated the BFO/MXene nanohybrid using simple and low cost double solvent solvothermal method. The SEM and TEM images show that the BFO nanoparticles were attached onto the MXene surface and in the inter-layers of two-dimensional (2D) MXene sheets. The photocatalytic application is tested for the visible light irradiation which showed the highest efficiency among all pure-BFO based photocatalysts, i.e. 100% degradation in 42 min for organic dye (Congo Red) and colorless aqueous pollutant (acetophenone) in 150 min, respectively. The present BFO-based hybrid system exhibited the large surface area of 147 m<sup>2</sup>g<sup>-1</sup>measured via Brunauer-Emmett-Teller (BET) sorption-desorption technique, and is found to be largest among BFO and its derivatives. Also, the photoluminescence (PL) spectra indicate large electron-hole pair generation. Fast and efficient degradation of organic molecules is supported by both factors; larger surface area and lower electron-hole recombination rate. The BFO/MXene nanohybrid presented here is a highly efficient photocatalyst compared to other nanostructures based on pure BiFeO<sub>3</sub> which makes it a promising candidate for many future applications.</p>


2018 ◽  
Vol 9 ◽  
pp. 2287-2296
Author(s):  
Lukáš Ondič ◽  
Marian Varga ◽  
Ivan Pelant ◽  
Alexander Kromka ◽  
Karel Hruška ◽  
...  

We have fabricated two-dimensional photonic crystals (PhCs) on the surface of Si nanocrystal-rich SiO2 layers with the goal to maximize the photoluminescence extraction efficiency in the normal direction. The fabricated periodic structures consist of columns ordered into square and hexagonal pattern with lattice constants computed such that the red photoluminescence of Si nanocrystals (SiNCs) could couple to leaky modes of the PhCs and could be efficiently extracted to surrounding air. Samples having different lattice constants and heights of columns were investigated in order to find the configuration with the best performance. Spectral overlap of the leaky modes with the luminescence spectrum of SiNCs was verified experimentally by measuring photonic band diagrams of the leaky modes employing angle-resolved spectroscopy and also theoretically by computing the reflectance spectra. The extraction enhancement within different spatial angles was evaluated by means of micro-photoluminescence spectroscopy. More than 18-fold extraction enhancement was achieved for light propagating in the normal direction and up to 22% increase in overall intensity was obtained at the spatial collection angle of 14°.


2018 ◽  
Vol 6 (5) ◽  
pp. 1171-1175 ◽  
Author(s):  
Zhenyue Wu ◽  
Chengmin Ji ◽  
Zhihua Sun ◽  
Sasa Wang ◽  
Sangen Zhao ◽  
...  

Broadband white-light emission with an ultrahigh CRI of 93 based on an organic–inorganic hybrid 2D corrugated perovskite.


2013 ◽  
Vol 2013 ◽  
pp. 1-13
Author(s):  
Motoaki Saruwatari ◽  
Masa-aki Hashimoto ◽  
Ryohei Fukuda ◽  
Shin-ichiro Fujimoto

We investigate the r-process nucleosynthesis during the magnetohydrodynamical (MHD) explosion of a supernova in a helium star of 3.3 M⊙, where effects of neutrinos are taken into account using the leakage scheme in the two-dimensional (2D) hydrodynamic code. Jet-like explosion due to the combined effects of differential rotation and magnetic field is able to erode the lower electron fraction matter from the inner layers. We find that the ejected material of low electron fraction responsible for the r-process comes out from just outside the neutrino sphere deep inside the Fe-core. It is found that heavy element nucleosynthesis depends on the initial conditions of rotational and magnetic fields. In particular, the third peak of the distribution is significantly overproduced relative to the solar system abundances, which would indicate a possible r-process site owing to MHD jets in supernovae.


Vacuum ◽  
2019 ◽  
Vol 161 ◽  
pp. 49-54 ◽  
Author(s):  
U. Nwankwo ◽  
R. Bucher ◽  
A.B.C. Ekwealor ◽  
S. Khamlich ◽  
Malik Maaza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document