A Mini-Review: MXene composites for sodium/potassium-ion batteries

Nanoscale ◽  
2020 ◽  
Vol 12 (30) ◽  
pp. 15993-16007 ◽  
Author(s):  
Muhammad Kashif Aslam ◽  
Maowen Xu

This paper reviews the latest research progress of MXenes and their composite materials in sodium and potassium ion batteries, briefly introduces the research background of SIBs, PIBs and MXenes, and focuses on the application of MXene composite materials in SIBs and PIBs.

Author(s):  
Bochao Chen ◽  
Ming Liang ◽  
Qingzhao Wu ◽  
Shan Zhu ◽  
Naiqin Zhao ◽  
...  

AbstractThe development of sodium-ion (SIBs) and potassium-ion batteries (PIBs) has increased rapidly because of the abundant resources and cost-effectiveness of Na and K. Antimony (Sb) plays an important role in SIBs and PIBs because of its high theoretical capacity, proper working voltage, and low cost. However, Sb-based anodes have the drawbacks of large volume changes and weak charge transfer during the charge and discharge processes, thus leading to poor cycling and rapid capacity decay. To address such drawbacks, many strategies and a variety of Sb-based materials have been developed in recent years. This review systematically introduces the recent research progress of a variety of Sb-based anodes for SIBs and PIBs from the perspective of composition selection, preparation technologies, structural characteristics, and energy storage behaviors. Moreover, corresponding examples are presented to illustrate the advantages or disadvantages of these anodes. Finally, we summarize the challenges of the development of Sb-based materials for Na/K-ion batteries and propose potential research directions for their further development.


Author(s):  
Yingying Wang ◽  
Dan Liu ◽  
Meiling Sun ◽  
Jinping Liu

Due to their safety, environmental benignity, and affordability, aqueous sodium/potassium-ion batteries (ASIBs/APIBs) have attracted increasing attention as promising candidates for large-scale stationary energy storage systems. Nevertheless, the practical applications of...


2013 ◽  
Vol 3 (3) ◽  
pp. 269-282 ◽  
Author(s):  
Dongzhi Lai ◽  
Wenxing Chen ◽  
Guohua Jiang

Author(s):  
Jinji Liang ◽  
Liying Liu ◽  
Xiangsi Liu ◽  
Xiangcong Meng ◽  
Linyong Zeng ◽  
...  

Carbon ◽  
2021 ◽  
Vol 178 ◽  
pp. 233-242
Author(s):  
Shi Tao ◽  
Wei Xu ◽  
Jihui Zheng ◽  
Fanjun Kong ◽  
Peixin Cui ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 776
Author(s):  
Sixiang Zhai ◽  
Qingying Liu ◽  
Yuelong Zhao ◽  
Hui Sun ◽  
Biao Yang ◽  
...  

With the depletion of petroleum energy, the possibility of prices of petroleum-based materials increasing, and increased environmental awareness, biodegradable materials as a kind of green alternative have attracted more and more research attention. In this context, poly (lactic acid) has shown a unique combination of properties such as nontoxicity, biodegradability, biocompatibility, and good workability. However, examples of its known drawbacks include poor tensile strength, low elongation at break, poor thermal properties, and low crystallization rate. Lignocellulosic materials such as lignin and cellulose have excellent biodegradability and mechanical properties. Compounding such biomass components with poly (lactic acid) is expected to prepare green composite materials with improved properties of poly (lactic acid). This paper is aimed at summarizing the research progress of modification of poly (lactic acid) with lignin and cellulose made in in recent years, with emphasis on effects of lignin and cellulose on mechanical properties, thermal stability and crystallinity on poly (lactic acid) composite materials. Development of poly (lactic acid) composite materials in this respect is forecasted.


Sign in / Sign up

Export Citation Format

Share Document