scholarly journals The Effects of Overhang Placement and Multivalency on Cell Labeling by DNA Origami

Nanoscale ◽  
2021 ◽  
Author(s):  
Ying Liu ◽  
Piyumi Wijesekara-Kankanange ◽  
Sriram Kumar ◽  
Weitao Wang ◽  
Xi Ren ◽  
...  

Through targeted binding to the cell membrane, structural DNA nanotechnology has the potential to guide and affix biomolecules such as drugs, growth factors and nanobiosensors to the surfaces of cells....

2019 ◽  
Vol 48 (1) ◽  
pp. 395-419 ◽  
Author(s):  
Eike-Christian Wamhoff ◽  
James L. Banal ◽  
William P. Bricker ◽  
Tyson R. Shepherd ◽  
Molly F. Parsons ◽  
...  

Structural DNA nanotechnology is beginning to emerge as a widely accessible research tool to mechanistically study diverse biophysical processes. Enabled by scaffolded DNA origami in which a long single strand of DNA is weaved throughout an entire target nucleic acid assembly to ensure its proper folding, assemblies of nearly any geometric shape can now be programmed in a fully automatic manner to interface with biology on the 1–100-nm scale. Here, we review the major design and synthesis principles that have enabled the fabrication of a specific subclass of scaffolded DNA origami objects called wireframe assemblies. These objects offer unprecedented control over the nanoscale organization of biomolecules, including biomolecular copy numbers, presentation on convex or concave geometries, and internal versus external functionalization, in addition to stability in physiological buffer. To highlight the power and versatility of this synthetic structural biology approach to probing molecular and cellular biophysics, we feature its application to three leading areas of investigation: light harvesting and nanoscale energy transport, RNA structural biology, and immune receptor signaling, with an outlook toward unique mechanistic insight that may be gained in these areas in the coming decade.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 503 ◽  
Author(s):  
Dianming Wang ◽  
Yiyang Zhang ◽  
Dongsheng Liu

Transmembrane proteins are mostly nanochannels playing a highly important role in metabolism. Understanding their structures and functions is vital for revealing life processes. It is of fundamental interest to develop chemical devices to mimic biological channels. Structural DNA nanotechnology has been proven to be a promising method for the preparation of fine DNA nanochannels as a result of the excellent properties of DNA molecules. This review presents the development history and current situation of three different types of DNA nanochannel: tile-based nanotube, DNA origami nanochannel, and DNA bundle nanochannel.


2020 ◽  
Vol 48 (10) ◽  
pp. 5268-5280 ◽  
Author(s):  
Jacob M Majikes ◽  
Paul N Patrone ◽  
Daniel Schiffels ◽  
Michael Zwolak ◽  
Anthony J Kearsley ◽  
...  

Abstract Structural DNA nanotechnology, as exemplified by DNA origami, has enabled the design and construction of molecularly-precise objects for a myriad of applications. However, limitations in imaging, and other characterization approaches, make a quantitative understanding of the folding process challenging. Such an understanding is necessary to determine the origins of structural defects, which constrain the practical use of these nanostructures. Here, we combine careful fluorescent reporter design with a novel affine transformation technique that, together, permit the rigorous measurement of folding thermodynamics. This method removes sources of systematic uncertainty and resolves problems with typical background-correction schemes. This in turn allows us to examine entropic corrections associated with folding and potential secondary and tertiary structure of the scaffold. Our approach also highlights the importance of heat-capacity changes during DNA melting. In addition to yielding insight into DNA origami folding, it is well-suited to probing fundamental processes in related self-assembling systems.


Author(s):  
Raghu Pradeep Narayanan ◽  
Leeza Abraham

Abstreact: DNA nanotechnology marvels the scientific world with its capabilities to design, engineer, and demonstrate nanoscale shapes. This review is a condensed version walking the reader through the structural developments in the field over the past 40 years starting from the basic design rules of the double-stranded building block to the most recent advancements in self-assembled hierarchically achieved structures to date. It builds off from the fundamental motivation of building 3-dimensional (3D) lattice structures of tunable cavities going all the way up to artificial nanorobots fighting cancer. The review starts by covering the most important developments from the fundamental bottom-up approach of building structures, which is the ‘tile’ based approach covering 1D, 2D, and 3D building blocks, after which, the top-down approach using DNA origami and DNA bricks is also covered. Thereafter, DNA nanostructures assembled using not so commonly used (yet promising) techniques like i-motifs, quadruplexes, and kissing loops are covered. Highlights from the field of dynamic DNA nanostructures have been covered as well, walking the reader through the various approaches used within the field to achieve movement. The article finally concludes by giving the authors a view of what the future of the field might look like while suggesting in parallel new directions that fellow/future DNA nanotechnologists could think about.


Author(s):  
Heini Ijäs ◽  
Sami Nummelin ◽  
Boxuan Shen ◽  
Mauri A. Kostiainen ◽  
Veikko Linko

Structural DNA nanotechnology provides an excellent foundation for diverse nanoscale shapes that can be used in various bioapplications and materials research. From all existing DNA assembly techniques, DNA origami has proven to be the most robust one for creating custom nanoshapes. Since its invention in 2006, building from the bottom up using DNA has drastically advanced, and therefore, more and more complex DNA-based systems have become accessible. So far, vast majority of the demonstrated DNA origami frameworks are static by nature, but interestingly, there also exist dynamic DNA origami devices that are increasingly coming into view. In this review, we discuss DNA origami nanostructures that perform controlled translational or rotational movement triggered by predefined DNA strands, various molecular interactions and/or other external stimuli such as light, pH, temperature and electromagnetic fields. The rapid evolution of such dynamic DNA origami tools will undoubtedly have a significant impact on molecular scale precision measurements, targeted drug delivery and diagnostics, but they can also play a role in development of optical/plasmonic sensors, nanophotonic devices and nanorobotics for numerous different tasks.


2021 ◽  
Vol 11 (7) ◽  
pp. 2950
Author(s):  
Bolutito Babatunde ◽  
D. Sebastian Arias ◽  
Jonathan Cagan ◽  
Rebecca E. Taylor

Structural DNA nanotechnology involves the design and self-assembly of DNA-based nanostructures. As a field, it has progressed at an exponential rate over recent years. The demand for unique DNA origami nanostructures has driven the development of design tools, but current CAD tools for structural DNA nanotechnology are limited by requiring users to fully conceptualize a design for implementation. This article introduces a novel formal approach for routing the single-stranded scaffold DNA that defines the shape of DNA origami nanostructures. This approach for automated scaffold routing broadens the design space and generates complex multilayer DNA origami designs in an optimally driven way, based on a set of constraints and desired features. This technique computes unique designs of DNA origami assemblies by utilizing shape annealing, which is an integration of shape grammars and the simulated annealing algorithm. The results presented in this article illustrate the potential of the technique to code desired features into DNA nanostructures.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1332
Author(s):  
Armando Hernandez-Garcia

Proteins and DNA exhibit key physical chemical properties that make them advantageous for building nanostructures with outstanding features. Both DNA and protein nanotechnology have growth notably and proved to be fertile disciplines. The combination of both types of nanotechnologies is helpful to overcome the individual weaknesses and limitations of each one, paving the way for the continuing diversification of structural nanotechnologies. Recent studies have implemented a synergistic combination of both biomolecules to assemble unique and sophisticate protein–DNA nanostructures. These hybrid nanostructures are highly programmable and display remarkable features that create new opportunities to build on the nanoscale. This review focuses on the strategies deployed to create hybrid protein–DNA nanostructures. Here, we discuss strategies such as polymerization, spatial directing and organizing, coating, and rigidizing or folding DNA into particular shapes or moving parts. The enrichment of structural DNA nanotechnology by incorporating protein nanotechnology has been clearly demonstrated and still shows a large potential to create useful and advanced materials with cell-like properties or dynamic systems. It can be expected that structural protein–DNA nanotechnology will open new avenues in the fabrication of nanoassemblies with unique functional applications and enrich the toolbox of bionanotechnology.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1413
Author(s):  
Sofia Ojasalo ◽  
Petteri Piskunen ◽  
Boxuan Shen ◽  
Mauri A. Kostiainen ◽  
Veikko Linko

Viruses are among the most intriguing nanostructures found in nature. Their atomically precise shapes and unique biological properties, especially in protecting and transferring genetic information, have enabled a plethora of biomedical applications. On the other hand, structural DNA nanotechnology has recently emerged as a highly useful tool to create programmable nanoscale structures. They can be extended to user defined devices to exhibit a wide range of static, as well as dynamic functions. In this review, we feature the recent development of virus-DNA hybrid materials. Such structures exhibit the best features of both worlds by combining the biological properties of viruses with the highly controlled assembly properties of DNA. We present how the DNA shapes can act as “structured” genomic material and direct the formation of virus capsid proteins or be encapsulated inside symmetrical capsids. Tobacco mosaic virus-DNA hybrids are discussed as the examples of dynamic systems and directed formation of conjugates. Finally, we highlight virus-mimicking approaches based on lipid- and protein-coated DNA structures that may elicit enhanced stability, immunocompatibility and delivery properties. This development also paves the way for DNA-based vaccines as the programmable nano-objects can be used for controlling immune cell activation.


Structural DNA nanotechnology is a system whereby branched DNA molecules are fashioned into objects, or 1D, 2D and 3D lattices, as well as nanomechanical devices. Normally, one is dealing with the usual B-form DNA molecule, but variations on this theme can lead to alterations in both the structures and the properties of the constructs. 2’-Fluoro DNA (FDNA), wherein one of the hydrogen atoms of the 2’ carbon is replaced by a fluorine atom, is a minimal steric perturbation on the structure of the DNA backbone. The helical structure of this duplex is of great interest for applications in structural DNA nanotechnology, because the DNA-FDNA hybrid assumes an A-form double helix, without the instabilities associated with RNA. Here we have used an atomic force microscopic method to estimate the helicity of DNA-FDNA hybrids, and we find that the structure contains 11.8 nucleotide pairs per helical turn with an error of ± 0.6 nucleotide pairs, similar to other A-form molecules.


2018 ◽  
Vol 19 (7) ◽  
pp. 2114 ◽  
Author(s):  
Heini Ijäs ◽  
Sami Nummelin ◽  
Boxuan Shen ◽  
Mauri Kostiainen ◽  
Veikko Linko

DNA nanotechnology provides an excellent foundation for diverse nanoscale structures that can be used in various bioapplications and materials research. Among all existing DNA assembly techniques, DNA origami proves to be the most robust one for creating custom nanoshapes. Since its invention in 2006, building from the bottom up using DNA advanced drastically, and therefore, more and more complex DNA-based systems became accessible. So far, the vast majority of the demonstrated DNA origami frameworks are static by nature; however, there also exist dynamic DNA origami devices that are increasingly coming into view. In this review, we discuss DNA origami nanostructures that exhibit controlled translational or rotational movement when triggered by predefined DNA sequences, various molecular interactions, and/or external stimuli such as light, pH, temperature, and electromagnetic fields. The rapid evolution of such dynamic DNA origami tools will undoubtedly have a significant impact on molecular-scale precision measurements, targeted drug delivery and diagnostics; however, they can also play a role in the development of optical/plasmonic sensors, nanophotonic devices, and nanorobotics for numerous different tasks.


Sign in / Sign up

Export Citation Format

Share Document