scholarly journals Catechol-functionalized sequence-defined glycomacromolecules as covalent inhibitors of bacterial adhesion

2020 ◽  
Vol 11 (37) ◽  
pp. 6091-6096
Author(s):  
Lukas Fischer ◽  
Ricarda C. Steffens ◽  
Tanja J. Paul ◽  
Laura Hartmann

Herein, we present the synthesis of catechol functionalized sequence-defined glycomacromolecules that can covalently block the binding site of lectins and bacterial adhesins.

2017 ◽  
Vol 13 ◽  
pp. 2584-2595 ◽  
Author(s):  
Christoph P Sager ◽  
Deniz Eriş ◽  
Martin Smieško ◽  
Rachel Hevey ◽  
Beat Ernst

In general, carbohydrate–lectin interactions are characterized by high specificity but also low affinity. The main reason for the low affinities are desolvation costs, due to the numerous hydroxy groups present on the ligand, together with the typically polar surface of the binding sites. Nonetheless, nature has evolved strategies to overcome this hurdle, most prominently in relation to carbohydrate–lectin interactions of the innate immune system but also in bacterial adhesion, a process key for the bacterium’s survival. In an effort to better understand the particular characteristics, which contribute to a successful carbohydrate recognition domain, the mannose-binding sites of six C-type lectins and of three bacterial adhesins were analyzed. One important finding is that the high enthalpic penalties caused by desolvation can only be compensated for by the number and quality of hydrogen bonds formed by each of the polar hydroxy groups engaged in the binding process. In addition, since mammalian mannose-binding sites are in general flat and solvent exposed, the half-lives of carbohydrate–lectin complexes are rather short since water molecules can easily access and displace the ligand from the binding site. In contrast, the bacterial lectin FimH benefits from a deep mannose-binding site, leading to a substantial improvement in the off-rate. Together with both a catch-bond mechanism (i.e., improvement of affinity under shear stress) and multivalency, two methods commonly utilized by pathogens, the affinity of the carbohydrate–FimH interaction can be further improved. Including those just described, the various approaches explored by nature to optimize selectivity and affinity of carbohydrate–lectin interactions offer interesting therapeutic perspectives for the development of carbohydrate-based drugs.


2019 ◽  
Author(s):  
Michael Olp ◽  
Daniel Sprague ◽  
Stefan Kathman ◽  
Ziyang Xu ◽  
Alexandar Statsyuk ◽  
...  

<p>Brd4, a member of the bromodomain and extraterminal domain (BET) family, has emerged as a promising epigenetic target in cancer and inflammatory disorders. All reported BET family ligands bind within the bromodomain acetyl-lysine binding sites and competitively inhibit BET protein interaction with acetylated chromatin. Alternative chemical probes that act orthogonally to the highly-conserved acetyl-lysine binding sites may exhibit selectivity within the BET family and avoid recently reported toxicity in clinical trials of BET bromodomain inhibitors. Here, we report the first identification of a ligandable site on a bromodomain outside the acetyl-lysine binding site. Inspired by our computational prediction of hotspots adjacent to non-homologous cysteine residues within the <i>C</i>-terminal Brd4 bromodomain (Brd4-BD2), we performed a mid-throughput mass spectrometry screen to identify cysteine-reactive fragments that covalently and selectively modify Brd4. Subsequent mass spectrometry, NMR and computational docking analyses of electrophilic fragment hits revealed a novel ligandable site near Cys356 that is unique to Brd4 among all human bromodomains. This site is orthogonal to the Brd4-BD2 acetyl-lysine binding site as Cys356 modification did not impact binding of the pan-BET bromodomain inhibitor JQ1 in fluorescence polarization assays. Finally, we tethered covalent fragments to JQ1 and performed NanoBRET assays to provide proof of principle that this orthogonal site can be covalently targeted in intact human cells. Overall, we demonstrate the potential of targeting sites orthogonal to bromodomain acetyl-lysine binding sites to develop bivalent and covalent inhibitors that displace Brd4 from chromatin.</p>


2015 ◽  
Vol 11 ◽  
pp. 1096-1104 ◽  
Author(s):  
Tobias-Elias Gloe ◽  
Insa Stamer ◽  
Cornelia Hojnik ◽  
Tanja M Wrodnigg ◽  
Thisbe K Lindhorst

The Amadori rearrangement was employed for the synthesis ofC-glycosyl-type D-mannoside analogues, namely 1-propargylamino- and 1-phenylamino-1-deoxy-α-D-manno-heptopyranose. They were investigated as ligands of type 1-fimbriatedE. colibacteria by means of molecular docking and bacterial adhesion studies. It turns out that Amadori rearrangement products have a limited activity as inhibitors of bacterial adhesion because the β-C-glycosidically linked aglycone considerably hampers complexation within the carbohydrate binding site of the type 1-fimbrial lectin FimH.


2019 ◽  
Author(s):  
Michael Olp ◽  
Daniel Sprague ◽  
Stefan Kathman ◽  
Ziyang Xu ◽  
Alexandar Statsyuk ◽  
...  

<p>Brd4, a member of the bromodomain and extraterminal domain (BET) family, has emerged as a promising epigenetic target in cancer and inflammatory disorders. All reported BET family ligands bind within the bromodomain acetyl-lysine binding sites and competitively inhibit BET protein interaction with acetylated chromatin. Alternative chemical probes that act orthogonally to the highly-conserved acetyl-lysine binding sites may exhibit selectivity within the BET family and avoid recently reported toxicity in clinical trials of BET bromodomain inhibitors. Here, we report the first identification of a ligandable site on a bromodomain outside the acetyl-lysine binding site. Inspired by our computational prediction of hotspots adjacent to non-homologous cysteine residues within the <i>C</i>-terminal Brd4 bromodomain (Brd4-BD2), we performed a mid-throughput mass spectrometry screen to identify cysteine-reactive fragments that covalently and selectively modify Brd4. Subsequent mass spectrometry, NMR and computational docking analyses of electrophilic fragment hits revealed a novel ligandable site near Cys356 that is unique to Brd4 among all human bromodomains. This site is orthogonal to the Brd4-BD2 acetyl-lysine binding site as Cys356 modification did not impact binding of the pan-BET bromodomain inhibitor JQ1 in fluorescence polarization assays. Finally, we tethered covalent fragments to JQ1 and performed NanoBRET assays to provide proof of principle that this orthogonal site can be covalently targeted in intact human cells. Overall, we demonstrate the potential of targeting sites orthogonal to bromodomain acetyl-lysine binding sites to develop bivalent and covalent inhibitors that displace Brd4 from chromatin.</p>


2020 ◽  
Author(s):  
Jurica Novak ◽  
Hrvoje Rimac ◽  
Shivananda Kandagalla ◽  
Prateek Pathak ◽  
Maria Grishina ◽  
...  

Abstract The SARS-CoV-2 3CL protease shows a high similarity with 3CL proteases of other beta-coronaviruses, such as SARS and MERS. It is the main enzyme involved in generating various non-structural proteins that are important for viral replication and is one of the most important proteins responsible for SARS-CoV-2 virulence. In this study, we have conducted ensemble docking of molecules from the DrugBank database using both crystallographic structure of the SARS-CoV-2 3CLpro, as well as five conformations obtained after performing a cluster analysis of a 300 ns molecular dynamics simulation. This procedure elucidated the inappropriateness of the active site for non-covalent inhibitors, but it has also shown that there exists an additional, more favorable, allosteric binding site, which could be a better target for non-covalent inhibitors, as it could prevent dimerization and activation of SARS-CoV-2 3CLpro.


2020 ◽  
Author(s):  
Naoya Kitamura ◽  
Michael Dominic Sacco ◽  
Chunlong Ma ◽  
Yanmei Hu ◽  
Julia Alma Townsend ◽  
...  

AbstractThe main protease (Mpro) of SARS-CoV-2 is a validated antiviral drug target. Several Mpro inhibitors have been reported with potent enzymatic inhibition and cellular antiviral activity, including GC376, boceprevir, calpain inhibitors II and XII, each containing a reactive warhead that covalently modifies the catalytic Cys145. In this study, we report an expedited drug discovery approach by coupling structure-based design and Ugi four-component (Ugi-4CR) reaction methodology to the design of non-covalent Mpro inhibitors. The most potent compound 23R had cellular antiviral activity similar to covalent inhibitors such as GC376. Our designs were guided by overlaying the structure of SARS-CoV Mpro + ML188 (R), a non-covalent inhibitor derived from Ug-4CR, with the X-ray crystal structures of SARS-CoV-2 Mpro + calpain inhibitor XII/GC376/UAWJ247. Binding site analysis suggests a strategy of extending the P2 and P3 substitutions in ML188 (R) to achieve optimal shape complementary with SARS-CoV-2 Mpro. Lead optimization led to the discovery of 23R, which inhibits SARS-CoV-2 Mpro and SARS-CoV-2 viral replication with an IC50 of 0.31 μM and EC50 of 1.27 μM, respectively. The binding and specificity of 23R to SARS-CoV-2 Mpro were confirmed in a thermal shift assay and native mass spectrometry assay. The co-crystal structure of SARS-CoV-2 Mpro with 23R revealed the P2 biphenyl fits snuggly into the S2 pocket and the benzyl group in the α-methylbenzyl faces towards the core of the enzyme, occupying a previously unexplored binding site located in between the S2 and S4 pockets. Overall, this study revealed the most potent non-covalent SARS-CoV-2 Mpro inhibitors reported to date and a novel binding pocket that can be explored for Mpro inhibitor design.


1997 ◽  
Vol 11 (1) ◽  
pp. 168-175 ◽  
Author(s):  
J.O. Cisar ◽  
Y. Takahashi ◽  
S. Ruhl ◽  
J.A. Donkersloot ◽  
A.L. Sandberg

Oral surfaces are bathed in secretory antibodies and other salivary macromolecules that are potential inhibitors of specific microbial adhesion. Indigenous Gram-positive bacteria that colonize teeth, including viridans streptococci and actinomyces, may avoid inhibition of adhesion by host secretory molecules through various strategies that involve the structural design and binding properties of bacterial adhesins and receptors. Further studies to define the interactions of these molecules within the host environment may suggest novel approaches for the control of oral biofilm formation.


2016 ◽  
Vol 7 (8) ◽  
pp. 5523-5529 ◽  
Author(s):  
Hwan Bae ◽  
Jun Young Jang ◽  
Sun-Sil Choi ◽  
Jae-Jin Lee ◽  
Heejun Kim ◽  
...  

We revealed the X-ray structure of PPARγ co-crystallized with SR1664 bound to the alternate binding site of PPARγ and confirmed that this blocks the phosphorylation of Ser273.


2002 ◽  
Vol 70 (3) ◽  
pp. 1615-1618 ◽  
Author(s):  
Ianko D. Iankov ◽  
Dragomir P. Petrov ◽  
Ivan V. Mladenov ◽  
Iana H. Haralambieva ◽  
Ivan G. Mitov

ABSTRACT The protective potential of immunoglobulin A (IgA) monoclonal antibodies (MAbs) directed against O and H antigens of Salmonella enterica serotype Enteritidis to prevent bacterial adhesion to and invasion of HEp-2 cells was evaluated. Although anti-flagellar IgA MAbs showed strong agglutinating capacities, they did not protect cell monolayers. In contrast, IgA MAbs specific for the O:9 epitope of Salmonella lipopolysaccharide antigen alone prevented S. enterica serotype Enteritidis entry and replication within HEp-2 cells, and the protection was not mediated by direct binding of antibodies to bacterial adhesins or by agglutination of microorganisms.


Sign in / Sign up

Export Citation Format

Share Document