Recent Progress Towards Synthesis of Furanosteroid Family of Natural Products

Author(s):  
Bidyut Kumar Senapati

Furanosteroids are a class of novel pentacyclic fungal metabolites that share in common a furan ring, bridging at the 4 and 6 positions of the steroid skeleton. The strained furan...

2020 ◽  
Vol 17 (2) ◽  
pp. 82-90 ◽  
Author(s):  
Ghodsi Mohammadi Ziarani ◽  
Fatemeh Mohajer ◽  
Zohreh kheilkordi

Background: Natural products have been received attention due to their importance in human life as those are biologically active. In this review, there are some reports through different methods related to the synthesis of the indolizidine 195B which was extracted from poisonous frog; however, due to respect nature, the synthesis of natural compounds such as indolizidine has been attracted much attention among scientists and researchers. Objective: This review discloses the procedures and methods to provide indolizidine 195B from 1989 to 2018 due to their importance as a natural product. Conclusion: There are several methods to give rise to the indolizidine 195B as a natural product that is highly active from the biological perspective in pharmaceutical chemistry. In summary, many protocols for the preparations of indolizidine 195B from various substrates, several reagents, and conditions have been reported from different aromatic and aliphatic.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 720
Author(s):  
Satomi Niwayama

Symmetric organic compounds are generally obtained inexpensively, and therefore they can be attractive building blocks for the total synthesis of various pharmaceuticals and natural products. The drawback is that discriminating the identical functional groups in the symmetric compounds is difficult. Water is the most environmentally benign and inexpensive solvent. However, successful organic reactions in water are rather limited due to the hydrophobicity of organic compounds in general. Therefore, desymmetrization reactions in aqueous media are expected to offer versatile strategies for the synthesis of a variety of significant organic compounds. This review focuses on the recent progress of desymmetrization reactions of symmetric organic compounds in aqueous media without utilizing enzymes.


2006 ◽  
Vol 84 (10) ◽  
pp. 1226-1241 ◽  
Author(s):  
Peter Wipf ◽  
Michel Grenon

Our recent progress toward the synthesis of the furanocembranolide lophotoxin (1) is disclosed. Strategies for the stereoselective incorporation of the C13 stereocenter by a catalytic desymmetrization of a cyclic meso-anhydride, as well as a novel 1,6-addition reaction of organocuprates to unsaturated [1,3]dioxin-4-ones are discussed. Preliminary results on the development of a rhodium-catalyzed asymmetric 1,6-addition reaction are also mentioned. Finally, modifications of a previously reported transition-metal-catalyzed cyclization reaction involving α-propargyl β-keto esters allow furan ring formation either under thermal conditions or by microwave irradiation.Key words: 1,6-addition, organocuprates, catalytic desymmetrization, furan cyclization, microwave.


Phytomedicine ◽  
2018 ◽  
Vol 40 ◽  
pp. 125-139 ◽  
Author(s):  
Jie Yu ◽  
Changxi Wang ◽  
Qi Kong ◽  
Xiaxia Wu ◽  
Jin-Jian Lu ◽  
...  

Marine Drugs ◽  
2019 ◽  
Vol 17 (11) ◽  
pp. 636 ◽  
Author(s):  
Jianzhou Xu ◽  
Mengqi Yi ◽  
Lijian Ding ◽  
Shan He

Inflammation is a generalized, nonspecific, and beneficial host response of foreign challenge or tissue injury. However, prolonged inflammation is undesirable. It will cause loss function of involve organs, such as heat, pain redness, and swelling. Marine natural products have gained more and more attention due to their unique mechanism of anti-inflammatory action, and have considered a hotspot for anti-inflammatory drug development. Marine-derived fungi are promising sources of structurally unprecedented bioactive natural products. So far, a plethora of new secondary metabolites with anti-inflammatory activities from marine-derived fungi had been widely reported. This review covers 133 fungal metabolites described in the period of 2000 to 2018, including the structures and origins of these secondary metabolites.


2009 ◽  
Vol 4 (11) ◽  
pp. 1934578X0900401 ◽  
Author(s):  
Yi-Ming Chiang ◽  
Kuan-Han Lee ◽  
James F. Sanchez ◽  
Nancy P. Keller ◽  
Clay C. C. Wang

Recent published sequencing of fungal genomes has revealed that these microorganisms have a surprisingly large number of secondary metabolite pathways that can serve as potential sources for new and useful natural products. Most of the secondary metabolites and their biosynthesis pathways are currently unknown, possibly because they are produced in very small amounts and are thus difficult to detect or are produced only under specific conditions. Elucidating these fungal metabolites will require new molecular genetic tools, better understanding of the regulation of secondary metabolism, and state of the art analytical methods. This review describes recent strategies to mine the cryptic natural products and their biosynthetic pathways in fungi.


Synlett ◽  
2017 ◽  
Vol 28 (18) ◽  
pp. 2345-2352 ◽  
Author(s):  
Johan Winne ◽  
Jan Hullaert ◽  
Bram Denoo ◽  
Mien Christiaens ◽  
Brenda Callebaut

For the rapid elaboration of polycarbocyclic scaffolds, prevalent in many important families of terpenoid natural products, allyl cations derived from simple heterocyclic alcohols can be used as versatile reaction partners in both (4+3) and (3+2) cycloaddition pathways. Our recent progress in this area is outlined, pointing towards the untapped potential of heterocycles to act as reagents in novel or known but challenging organic transformations.1 Heterocyclic Reagents2 Cycloadditions and Allyl Cations3 Furfuryl Cations in Cycloadditions4 Heterocycle-Substituted Cations in Cycloadditions5 Mechanistic Considerations6 Conclusions and Outlook


2020 ◽  
Vol 101 ◽  
pp. 103922 ◽  
Author(s):  
Jiangkun Dai ◽  
Rui Han ◽  
Yujie Xu ◽  
Na Li ◽  
Junru Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document