scholarly journals Highly conductive and transient tracks based on silver flakes and a polyvinyl pyrrolidone composite

RSC Advances ◽  
2020 ◽  
Vol 10 (55) ◽  
pp. 33112-33118
Author(s):  
Su Ding ◽  
Qingfeng Cai ◽  
Jintao Mao ◽  
Fei Chen ◽  
Li Fu ◽  
...  

Transient electronics have been widely researched to solve the electronic waste (E-waste) issue.

2017 ◽  
Vol 114 (20) ◽  
pp. 5107-5112 ◽  
Author(s):  
Ting Lei ◽  
Ming Guan ◽  
Jia Liu ◽  
Hung-Cheng Lin ◽  
Raphael Pfattner ◽  
...  

Increasing performance demands and shorter use lifetimes of consumer electronics have resulted in the rapid growth of electronic waste. Currently, consumer electronics are typically made with nondecomposable, nonbiocompatible, and sometimes even toxic materials, leading to serious ecological challenges worldwide. Here, we report an example of totally disintegrable and biocompatible semiconducting polymers for thin-film transistors. The polymer consists of reversible imine bonds and building blocks that can be easily decomposed under mild acidic conditions. In addition, an ultrathin (800-nm) biodegradable cellulose substrate with high chemical and thermal stability is developed. Coupled with iron electrodes, we have successfully fabricated fully disintegrable and biocompatible polymer transistors. Furthermore, disintegrable and biocompatible pseudo-complementary metal–oxide–semiconductor (CMOS) flexible circuits are demonstrated. These flexible circuits are ultrathin (<1 μm) and ultralightweight (∼2 g/m2) with low operating voltage (4 V), yielding potential applications of these disintegrable semiconducting polymers in low-cost, biocompatible, and ultralightweight transient electronics.


Author(s):  
Liisa Hakola ◽  
Elina Jansson ◽  
Romain Futsch ◽  
Tuomas Happonen ◽  
Victor Thenot ◽  
...  

AbstractSustainability in electronics has a growing importance due to, e.g. increasing electronic waste, and global and European sustainability goals. Printing technologies and use of paper as a substrate enable manufacturing of sustainable electronic devices for emerging applications, such as the multi-layer anti-counterfeit label presented in this paper. This device consisted of electrochromic display (ECD) element, NFC (near field communication) tag and circuitry, all fully roll-to-roll (R2R) printed and assembled on plastic-free paper substrate, thus leading to a sustainable and recyclable device. Our setup uses harvested energy from HF field of a smartphone or reader, to switch an electrochromic display after rectification to prove authenticity of a product. Our novelty is in upscaling the manufacturing process to be fully printable and R2R processable in high-throughput conditions simulating industrial environment, i.e. in pilot scale. The printing workflow consisted of 11 R2R printed layers, all done in sufficient quality and registration. The printed antennas showed sheet resistance values of 32.9±1.9 mΩ/sq. The final yield was almost 1500 fully printed devices, and in R2R assembly over 1400 labels were integrated with 96.5% yield. All the assembled tags were readable with mobile phone NFC reader. The optical contrast (ΔE*) measured for the ECDs was over 15 for all the printed displays, a progressive switching time with a colour change visible in less than 5 s. The smart tag is ITO-free, plastic-free, fully printed in R2R and has a good stability over 50 cycles and reversible colour change from light to dark blue.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3722
Author(s):  
Joanna Willner ◽  
Agnieszka Fornalczyk ◽  
Magdalena Jablonska-Czapla ◽  
Katarzyna Grygoyc ◽  
Marzena Rachwal

The article draws attention to the problem of the presence of metals: germanium (Ge), tellurium (Te), thallium (Tl), and others (Cd, Ba, Co, Mn, Cr, Cu, Ni, Pb, Sr, and Zn) in selected waste of electrical and electronic equipment (WEEE). As a result of the growing demand for new technologies, the global consumption of TECs has also been increasing. Thus, the amount of metals in circulation, of which the impacts on the environment have not yet been fully understood, is constantly increasing. Due to the low content of these metals in WEEE, they are usually ignored during e-waste analyses. The main aim of this study was to determine the distribution of Ge, Te, and Tl (and other elements) in ground sieve fractions (1.0, 0.5, 0.2, and 0.1 mm) of selected electronic components (solar lamps, solar cell, LED TV screens, LCD screens, photoresistors, photodiodes, phototransistors) and to determine the possible tendency of the concentrations of these metals in fractions. This problem is particularly important because WEEE recycling processes (crushing, grinding, and even collection and transport operations) can lead to dispersion and migration of TCE pollutants into the environment. The quantitative composition of e-waste was identified and confirmed by ICP-MS, ICP-OES and SEM-EDS, and XRD analyses. It was found that Ge, Te, and Tl are concentrated in the finest fractions of ground e-waste, together with Cd and Cr, which may favor the migration of these pollutants in the form of dust during storage and processing of e-waste.


Author(s):  
qiqi li ◽  
Tao Wang ◽  
yuan zeng ◽  
yun fan ◽  
Shejun Chen ◽  
...  

The present study investigated legacy and novel brominated flame retardants (BFRs) in atmospheric PM2.5 associated with various urban source sectors in a city and electronic waste (e-waste) recycling facilities in...


2021 ◽  
Vol 82 ◽  
pp. 103096
Author(s):  
Augustine A. Acquah ◽  
Clive D'Souza ◽  
Bernard J. Martin ◽  
John Arko-Mensah ◽  
Paul K. Botwe ◽  
...  

2020 ◽  
Vol 40 (6) ◽  
pp. 487-493
Author(s):  
Chen Wang ◽  
Kun Yan ◽  
Jun Wang ◽  
Siyu Chen ◽  
Jiaming Cui ◽  
...  

AbstractIn this research, we successfully fabricated a novel closed pore polyacrylonitrile (PAN)/polyvinyl pyrrolidone (PVP) composite nanofibrous membrane (PCNM) on the substrate of a commercial polypropylene window mesh. First, smooth and uniform PAN/PVP composite nanofibers (PCNs) were manufactured by blending PAN and PVP with a mass ratio of 5:5 during electrospinning. Subsequently, the prepared PCNs were hot pressed in a vacuum drying oven at a given temperature of 90°C. The morphology and filter efficiency of PCN and PCNM were investigated. It was found that hot-pressing treatment significantly affected the pore structure and orientation of PCNM, which contributed to its closed pore structure and good alignment. The filter efficiency results indicated that the hot-pressed PCNMs have excellent removal efficiency of up to 96.8% of fine particulate matter. This research demonstrates that PCNMs have potential as filters for indoor dust removal and will provide a new idea for the development of air filters.


Sign in / Sign up

Export Citation Format

Share Document