scholarly journals A new soft-matter material with old chemistry: Passerini multicomponent polymerization-induced assembly of AIE-active double-helical polymers with rapid visible-light degradability

2020 ◽  
Vol 11 (31) ◽  
pp. 8224-8230 ◽  
Author(s):  
Jupen Liu ◽  
Zhonglong Luo ◽  
Le Yu ◽  
Ping Zhang ◽  
Hongqiu Wei ◽  
...  

Passerini multicomponent polymerization-induced assembly is reported to design a water-soluble, AIE-active, double-helical polymer with reversible multi-responsiveness to external stimuli and rapid visible-light degradability.

Author(s):  
Gore S. A. ◽  
Gholve S. B. ◽  
Savalsure S. M. ◽  
Ghodake K. B. ◽  
Bhusnure O. G. ◽  
...  

Smart polymers are materials that respond to small external stimuli. These are also referred as stimuli responsive materials or intelligent materials. Smart polymers that can exhibit stimuli-sensitive properties are becoming important in many commercial applications. These polymers can change shape, strength and pore size based on external factors such as temperature, pH and stress. The stimuli include salt, UV irradiation, temperature, pH, magnetic or electric field, ionic factors etc. Smart polymers are very promising applicants in drug delivery, tissue engineering, cell culture, gene carriers, textile engineering, oil recovery, radioactive wastage and protein purification. The study is focused on the entire features of smart polymers and their most recent and relevant applications. Water soluble polymers with tunable lower critical solution temperature (LCST) are of increasing interest for biological applications such as cell patterning, smart drug release, DNA sequencing etc.


2020 ◽  
Vol 8 (13) ◽  
pp. 6238-6244 ◽  
Author(s):  
Iuliia Romanenko ◽  
Ashwene Rajagopal ◽  
Christof Neumann ◽  
Andrey Turchanin ◽  
Carsten Streb ◽  
...  

The integration of molecular photosensitizers and catalysts into functional soft matter supports holds great promise for future energy conversion technologies.


2015 ◽  
Vol 54 (4) ◽  
pp. 473-479 ◽  
Author(s):  
Stephan Benedikt ◽  
Jieping Wang ◽  
Marica Markovic ◽  
Norbert Moszner ◽  
Kurt Dietliker ◽  
...  

2007 ◽  
Vol 124-126 ◽  
pp. 723-726 ◽  
Author(s):  
Makoto Kobayashi ◽  
Koji Tomita ◽  
Valery Petrykin ◽  
Shu Yin ◽  
Tsugio Sato ◽  
...  

Highly crystalline titania nano-particles were synthesized by hydrothermal method using novel stable water-soluble titanium complexes. It was confirmed that single phase anatase, rutile and brookite, which can be rarely synthesized as a single phase, can be obtained by varying the ligand in the complex and pH of the aqueous solution. TEM observations and BET specific surface area measurements had shown that these samples consisted of nanosized particles of 5~200 nm and had high specific surface areas of 25~150 m2/g. According to UV-visible diffuse reflectance spectra, these titania samples absorbed light in the visible region (λ > 400 nm). Photocatalytic activities in NO oxidation reaction exhibited by synthesized titania powders under the irradiation by UV- visible light were higher than the activity of the commercial TiO2 photocatalyst P25 (Degussa). Especially, under illumination by only visible light of above 510 nm wavelength, photocatalytic activity of the obtained specimens exceeded that of P25 more than four times. We also clearly demonstrated that single phase brookite had high photocatalytic activity for NO oxidation.


2021 ◽  
Vol 118 (49) ◽  
pp. e2110839118
Author(s):  
Miha Papič ◽  
Urban Mur ◽  
Kottoli Poyil Zuhail ◽  
Miha Ravnik ◽  
Igor Muševič ◽  
...  

Liquid crystals (LCs) form an extremely rich range of self-assembled topological structures with artificially or naturally created topological defects. Some of the main applications of LCs are various optical and photonic devices, where compared to their solid-state counterparts, soft photonic systems are fundamentally different in terms of unique properties such as self-assembly, self-healing, large tunability, sensitivity to external stimuli, and biocompatibility. Here we show that complex tunable microlasers emitting structured light can be generated from self-assembled topological LC superstructures containing topological defects inserted into a thin Fabry–Pérot microcavity. The topology and geometry of the LC superstructure determine the structuring of the emitted light by providing complex three-dimensionally varying optical axis and order parameter singularities, also affecting the topology of the light polarization. The microlaser can be switched between modes by an electric field, and its wavelength can be tuned with temperature. The proposed soft matter microlaser approach opens directions in soft matter photonics research, where structured light with specifically tailored intensity and polarization fields could be designed and implemented.


2020 ◽  
Author(s):  
Christiane Adler ◽  
Igor Krivtsov ◽  
Dariusz Mitoraj ◽  
Lucía dos Santos-Gómez ◽  
Santiago García-Granda ◽  
...  

In spite of the enormous promise that polymeric carbon nitride (PCN) materials hold for photoelectrochemical (PEC) applications, the fabrication of high-quality PCN photoelectrodes has been a largely elusive goal to date. Here we tackle this challenge by devising, for the first time, a sol–gel approach that enables facile preparation of photoanodes based on poly(heptazine imide) (PHI), a polymer belonging to the PCN family. The sol–gel process capitalizes on the use of a water-soluble PHI precursor composed of nanosized (~10 nm) particles that allows formation of a non-covalent hydrogel. The hydrogel can be deposited on a conductive substrate resulting in formation of mechanically stable porous polymeric thin layers (~400 nm), in contrast to the commonly obtained loosely attached thick particulate coatings. The resulting photoanodes exhibit unprecedented PEC performance in methanol reforming in neutral pH electrolytes with photocurrents of up to 177±27 mA cm<sup>-2</sup> (1 sun illumination) and 320±40 mA cm<sup>-2</sup> (2 sun illumination) at 1.23 V vs. RHE, maintaining such high photocurrents even down to ~0 V vs. RHE. These parameters permit effective operation even without any external electric bias, as demonstrated by bias-free photoreforming of methanol and glycerol, and highly selective (~100%) photooxidation of 4-methoxybenzyl alcohol (4-MBA). The robust binder-free films derived from sol–gel processing of water-soluble PCN thus represent a new paradigm for high-performance ‘soft-matter’ photoelectrocatalytic systems, and pave the way for further applications in which high-quality PCN films are required.


2015 ◽  
Vol 54 (48) ◽  
pp. 14549-14553 ◽  
Author(s):  
Saman Ghasimi ◽  
Simon Prescher ◽  
Zi Jun Wang ◽  
Katharina Landfester ◽  
Jiayin Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document