Techno-economic analysis of a solar-powered biomass electrolysis pathway for coproduction of hydrogen and value-added chemicals

2020 ◽  
Vol 4 (11) ◽  
pp. 5568-5577
Author(s):  
M. A. Khan ◽  
Tareq A. Al-Attas ◽  
Nael G. Yasri ◽  
Heng Zhao ◽  
Stephen Larter ◽  
...  

Techno-economic analysis of sunlight-driven electrochemical conversion of glucose to fuels and chemicals i.e., hydrogen, gluconic acid and glucaric acid.

2021 ◽  
Vol 238 ◽  
pp. 114134
Author(s):  
Mohamed G. Gado ◽  
Tamer F. Megahed ◽  
Shinichi Ookawara ◽  
Sameh Nada ◽  
Ibrahim I. El-Sharkawy

ACS Omega ◽  
2020 ◽  
Vol 5 (51) ◽  
pp. 33242-33252
Author(s):  
Marja Nappa ◽  
Michael Lienemann ◽  
Camilla Tossi ◽  
Peter Blomberg ◽  
Jussi Jäntti ◽  
...  

Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 23
Author(s):  
Wenli Wang ◽  
Yichen Liu ◽  
Yue Wang ◽  
Longfei Liu ◽  
Changwei Hu

The thermal degradation of lignin for value-added fuels and chemicals is important for environment improvement and sustainable development. The impact of pretreatment and catalysis of Ni(NO3)2 on the pyrolysis behavior of organsolv lignin were studied in the present work. Samples were pyrolyzed at 500 ∘C with an upward fixed bed, and the characteristics of bio-oil were determined. After pretreatment by Ni(NO3)2, the yield of monophenols increased from 23.3 wt.% to 30.2 wt.% in “Ni-washed” and decreased slightly from 23.3 wt.% to 20.3 wt.% in “Ni-unwashed”. Meanwhile, the selective formation of vinyl-monophenols was promoted in “Ni-unwashed”, which indicated that the existence of nickel species promoted the dehydration of C-OH and breakage of C-C in pyrolysis. In comparison with “Water”, HHV of bio-oil derived from “Ni-unwashed” slightly increased from 27.94 mJ/kg to 28.46 mJ/kg, suggesting that the lowering of oxygen content in bio-oil is associated with improved quality. Furthermore, the content of H2 in gas products dramatically increased from 2.0% to 7.6% and 17.1%, respectively.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Chaofeng Li ◽  
Xiaofeng Lin ◽  
Xing Ling ◽  
Shuo Li ◽  
Hao Fang

Abstract Background The biomanufacturing of d-glucaric acid has attracted increasing interest because it is one of the top value-added chemicals produced from biomass. Saccharomyces cerevisiae is regarded as an excellent host for d-glucaric acid production. Results The opi1 gene was knocked out because of its negative regulation on myo-inositol synthesis, which is the limiting step of d-glucaric acid production by S. cerevisiae. We then constructed the biosynthesis pathway of d-glucaric acid in S. cerevisiae INVSc1 opi1Δ and obtained two engineered strains, LGA-1 and LGA-C, producing record-breaking titers of d-glucaric acid: 9.53 ± 0.46 g/L and 11.21 ± 0.63 g/L d-glucaric acid from 30 g/L glucose and 10.8 g/L myo-inositol in fed-batch fermentation mode, respectively. However, LGA-1 was preferable because of its genetic stability and its superior performance in practical applications. There have been no reports on d-glucaric acid production from lignocellulose. Therefore, the biorefinery processes, including separated hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF) and consolidated bioprocessing (CBP) were investigated and compared. CBP using an artificial microbial consortium composed of Trichoderma reesei (T. reesei) Rut-C30 and S. cerevisiae LGA-1 was found to have relatively high d-glucaric acid titers and yields after 7 d of fermentation, 0.54 ± 0.12 g/L d-glucaric acid from 15 g/L Avicel and 0.45 ± 0.06 g/L d-glucaric acid from 15 g/L steam-exploded corn stover (SECS), respectively. In an attempt to design the microbial consortium for more efficient CBP, the team consisting of T. reesei Rut-C30 and S. cerevisiae LGA-1 was found to be the best, with excellent work distribution and collaboration. Conclusions Two engineered S. cerevisiae strains, LGA-1 and LGA-C, with high titers of d-glucaric acid were obtained. This indicated that S. cerevisiae INVSc1 is an excellent host for d-glucaric acid production. Lignocellulose is a preferable substrate over myo-inositol. SHF, SSF, and CBP were studied, and CBP using an artificial microbial consortium of T. reesei Rut-C30 and S. cerevisiae LGA-1 was found to be promising because of its relatively high titer and yield. T. reesei Rut-C30 and S. cerevisiae LGA-1were proven to be the best teammates for CBP. Further work should be done to improve the efficiency of this microbial consortium for d-glucaric acid production from lignocellulose.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Hui-Hui Su ◽  
Fei Peng ◽  
Pei Xu ◽  
Xiao-Ling Wu ◽  
Min-Hua Zong ◽  
...  

Abstract Background Glucaric acid, one of the aldaric acids, has been declared a “top value-added chemical from biomass”, and is especially important in the food and pharmaceutical industries. Biocatalytic production of glucaric acid from glucuronic acid is more environmentally friendly, efficient and economical than chemical synthesis. Uronate dehydrogenases (UDHs) are the key enzymes for the preparation of glucaric acid in this way, but the poor thermostability and low activity of UDH limit its industrial application. Therefore, improving the thermostability and activity of UDH, for example by semi-rational design, is a major research goal. Results In the present work, three UDHs were obtained from different Agrobacterium tumefaciens strains. The three UDHs have an approximate molecular weight of 32 kDa and all contain typically conserved UDH motifs. All three UDHs showed optimal activity within a pH range of 6.0–8.5 and at a temperature of 30 °C, but the UDH from A. tumefaciens (At) LBA4404 had a better catalytic efficiency than the other two UDHs (800 vs 600 and 530 s−1 mM−1). To further boost the catalytic performance of the UDH from AtLBA4404, site-directed mutagenesis based on semi-rational design was carried out. An A39P/H99Y/H234K triple mutant showed a 400-fold improvement in half-life at 59 °C, a 5 °C improvement in $$ {\text{T}}_{ 5 0}^{ 1 0} $$ T 50 10 value and a 2.5-fold improvement in specific activity at 30 °C compared to wild-type UDH. Conclusions In this study, we successfully obtained a triple mutant (A39P/H99Y/H234K) with simultaneously enhanced activity and thermostability, which provides a novel alternative for the industrial production of glucaric acid from glucuronic acid.


2008 ◽  
Vol 85 (3) ◽  
pp. 360-368 ◽  
Author(s):  
Mylène Fugère ◽  
Patrice Farand ◽  
Rock Chabot ◽  
Paul Stuart

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 241
Author(s):  
Rafael G. Ferreira ◽  
Adriano R. Azzoni ◽  
Maria Helena Andrade Santana ◽  
Demetri Petrides

Hyaluronic acid (HA) is a polysaccharide of alternating d-glucuronic acid and N-acetyl-d-glucosamine residues present in the extracellular matrix of connective, epithelial, and nervous tissues. Due to its singular hydrating, rheological and adhesive properties, HA has found numerous cosmetic and medical applications. However, techno-economic analyses of high value-added bioproducts such as HA are scarce in the literature. Here, we present a techno-economic analysis of a process for producing HA using Streptococcus zooepidemicus, simulated in SuperPro Designer. In the baseline scenario, HA is produced by batch fermentation, reaching 2.5 g/L after 24 h. It is then centrifuged, diafiltered, treated with activated carbon and precipitated with isopropanol. The product is suitable for topical formulations and its production cost was estimated as 1115 $/kg. A similar scenario, based on fed-batch culture and assuming a titer of 5.0 g/L, led to a lower cost of 946 $/kg. Moreover, in two additional scenarios, 10% of the precipitated HA is diverted to the production of a highly pure and high-molecular weight HA, suitable for injectable applications. These scenarios resulted in higher capital and operating costs, but also in higher profits, because HA for injectable use has a higher selling price that more than compensates for its higher production costs.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1113
Author(s):  
Hanyu Cong ◽  
Haibo Yuan ◽  
Zekun Tao ◽  
Hanlin Bao ◽  
Zheming Zhang ◽  
...  

Converting biomass into high value-added compounds has attracted great attention for solving fossil fuel consumption and global warming. 5-Hydroxymethylfurfural (HMF) has been considered as a versatile biomass-derived building block that can be used to synthesize a variety of sustainable fuels and chemicals. Among these derivatives, 2,5-furandicarboxylic acid (FDCA) is a desirable alternative to petroleum-derived terephthalic acid for the synthesis of biodegradable polyesters. Herein, to fully understand the current development of the catalytic conversion of biomass to FDCA, a comprehensive review of the catalytic conversion of cellulose biomass to HMF and the oxidation of HMF to FDCA is presented. Moreover, future research directions and general trends of using biomass for FDCA production are also proposed.


Author(s):  
Angel Irabien ◽  
Manuel Alvarez-Guerra ◽  
Jonathan Albo ◽  
Antonio Dominguez-Ramos

Sign in / Sign up

Export Citation Format

Share Document