Tumor microenvironment-responsive polydopamine-based core/shell nanoplatform for synergetic theranostics

2020 ◽  
Vol 8 (18) ◽  
pp. 4056-4066 ◽  
Author(s):  
Qian Chen ◽  
Xueru Shan ◽  
Suqing Shi ◽  
Chunzhu Jiang ◽  
Tinghua Li ◽  
...  

A tannic acid–Fe3+ networks-functionalized polydopamine-based composite nanoparticle was constructed and demonstrated the promising application for T1/T2-weighted MR imaging-guided synergistic treatment of PTT and reductant/photothermal-enhanced CDT.

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1007
Author(s):  
Azam Ali ◽  
Mariyam Sattar ◽  
Fiaz Hussain ◽  
Muhammad Humble Khalid Tareen ◽  
Jiri Militky ◽  
...  

The versatile one-pot green synthesis of a highly concentrated and stable colloidal dispersion of silver nanoparticles (Ag NPs) was carried out using the self-assembled tannic acid without using any other hazardous chemicals. Tannic acid (Plant-based polyphenol) was used as a reducing and stabilizing agent for silver nitrate in a mild alkaline condition. The synthesized Ag NPs were characterized for their concentration, capping, size distribution, and shape. The experimental results confirmed the successful synthesis of nearly spherical and highly concentrated (2281 ppm) Ag NPs, capped with poly-tannic acid (Ag NPs-PTA). The average particle size of Ag NPs-PTA was found to be 9.90 ± 1.60 nm. The colloidal dispersion of synthesized nanoparticles was observed to be stable for more than 15 months in the ambient environment (25 °C, 65% relative humidity). The synthesized AgNPs-PTA showed an effective antimicrobial activity against Staphylococcus Aureus (ZOI 3.0 mM) and Escherichia coli (ZOI 3.5 mM). Ag NPs-PTA also exhibited enhanced catalytic properties. It reduces 4-nitrophenol into 4-aminophenol in the presence of NaBH4 with a normalized rate constant (Knor = K/m) of 615.04 mL·s−1·mg−1. For comparison, bare Ag NPs show catalytic activity with a normalized rate constant of 139.78 mL·s−1·mg−1. Furthermore, AgNPs-PTA were stable for more than 15 months under ambient conditions. The ultra-high catalytic and good antimicrobial properties can be attributed to the fine size and good aqueous stability of Ag NPs-PTA. The unique core-shell structure and ease of synthesis render the synthesized nanoparticles superior to others, with potential for large-scale applications, especially in the field of catalysis and medical.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Haitao Chen ◽  
Renhua Li ◽  
Anqi Guo ◽  
Yu Xia

AbstractThe poor stability of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals is the most impediment to its application in the field of photoelectrics. In this work, monodisperse CsPbBr3/TiO2 nanocrystals are successfully prepared by coating titanium precursor on the surface of colloidal CsPbBr3 nanocrystals at room temperature. The CsPbBr3/TiO2 nanocomposites exhibit excellent stability, remaining the identical particle size (9.2 nm), crystal structures and optical properties. Time-resolved photoluminescence decay shows that the lifetime of CsPbBr3/TiO2 nanocrystals is about 4.04 ns and keeps great stability after lasting two months in the air. Results show that the coating of TiO2 on CsPbBr3 NCs greatly suppressed the anion exchange and photodegradation, which are the main reasons for dramatically improving their chemical stability and photostability. The results provide an effective method to solve the stability problem of perovskite nanostructures and are expected to have a promising application in optoelectronic fieldsArticle highlights 1. Prepared the all-inorganic CsPbBr3/TiO2 core/shell perovskite nanocrystals by an easy method. 2. Explored its essences of PL and lifetime of the synthesized CsPbBr3/TiO2 perovskite nanocrystals. 3. CsPbBr3/TiO2 nanocrystals show the great thermal stability after the post-annealing. 4. The CsPbBr3/TiO2 nanocrystals have a high PLQY and have a promising application in solar cells.


2021 ◽  
Author(s):  
Hongmei Zhong ◽  
Shengrong Yu ◽  
Bingqian Li ◽  
Kangdi He ◽  
Dian Li ◽  
...  

Dual-mode bio-imaging nanoprobe TP-CQDs@MnO2, based two-photon carbon quantum dots and MnO2, has been developed for two-photon fluorescence and MR imaging of endogenous H2O2 in tumor microenvironment, which achieved high selectivity,...


2003 ◽  
Vol 774 ◽  
Author(s):  
Jiye Fang ◽  
Jibao He ◽  
Eun Young Shin ◽  
Deborah Grimm ◽  
Charles J. O'Connor ◽  
...  

Abstractγ-Fe2O3@Au core-shell nanoparticles were prepared through a combined route, in which high temperature organic solution synthesis and colloidal microemulsion techniques were successively applied. High magnification of TEM reveals the core-shell structure. The presence of Au on the surface of as-prepared particles is also confirmed by UV-Vis absorption. The magnetic core-shell nanoparticles offer a promising application in bio- and medical systems.


Nanoscale ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 1801-1810 ◽  
Author(s):  
Yang Gao ◽  
Luyun Zhang ◽  
Yanhong Liu ◽  
Sijia Sun ◽  
Zhibin Yin ◽  
...  

Ce6/Mn2+-chelated, polydopamine (PDA)-coated black TiO2 (b-P25@PDA-Ce6 (Mn)) nanoprobes with core–shell structure were constructed for enhanced synergistic phototherapy and magnetic resonance (MR) imaging.


Author(s):  
Azam Ali ◽  
Mehrukh Zehravi ◽  
Muhammad Humble Khalid Treen ◽  
Jiri Militky ◽  
Fiaz Hussain ◽  
...  

The versatile one-pot green synthesis of a highly concentrated and stable colloidal dispersion of AgNPs was carried out using the self-assembled tannic acid without using any other hazardous chemicals. Tannic acid (Plant-based polyphenol) was used as a reducing and stabilizing agent for silver nitrate in a mild alkaline condition. The synthesized AgNPs were characterized for their concentration, capping, size distribution, and shape. The experimental results confirmed the successful synthesis of nearly spherical and highly concentrated (2281 ppm) AgNPs, capped with poly-tannic acid (AgNPs-PTA). The average particle size of AgNPs-PTA was found 9.90 ± 1.60 nm. The colloidal dispersion of synthesized nanoparticles was observed stable for more than 15 months in the ambient environment (25 oC, 65 % relative humidity). The synthesized AgNPs-PTA showed an effective antimicrobial activity against Staphylococcus Aureus Escherichia coli. Ag-PTA also exhibited enhanced catalytic properties. It reduces 4-nitrophenol into 4-aminophenol in the presence of NaBH4 with a normalized rate constant (Knor = K/m) of 615.04 mL·s-1·mg-1. Furthermore, AgNPs-PTA were stable for more than 15 months under ambient conditions. The unique core-shell structure and ease of synthesis render the synthesized nanoparticles superior to others, with potential for large-scale applications, especially in the field of catalysis and biomedical.


2014 ◽  
Vol 415 ◽  
pp. 70-76 ◽  
Author(s):  
Montri Ratanajanchai ◽  
Don Haeng Lee ◽  
Panya Sunintaboon ◽  
Su-Geun Yang

Sign in / Sign up

Export Citation Format

Share Document