HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels for enhanced cartilage differentiation

2020 ◽  
Vol 8 (28) ◽  
pp. 6115-6127
Author(s):  
Xiaoyun Liu ◽  
Shaoshuai Song ◽  
Jie Huang ◽  
Han Fu ◽  
Xinyu Ning ◽  
...  

HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels have been developed to provide a multifunctional biomimetic microenvironment for hMSC chondrogenesis.

2021 ◽  
pp. 2000398
Author(s):  
Fei Liu ◽  
Wenyu Li ◽  
Hongting Liu ◽  
Teng Yuan ◽  
Yu Yang ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2136
Author(s):  
Eric Luis ◽  
Houwen Matthew Pan ◽  
Anil Kumar Bastola ◽  
Ram Bajpai ◽  
Swee Leong Sing ◽  
...  

Osteoarthritis of the knee with meniscal pathologies is a severe meniscal pathology suffered by the aging population worldwide. However, conventional meniscal substitutes are not 3D-printable and lack the customizability of 3D printed implants and are not mechanically robust enough for human implantation. Similarly, 3D printed hydrogel scaffolds suffer from drawbacks of being mechanically weak and as a result patients are unable to execute immediate post-surgical weight-bearing ambulation and rehabilitation. To solve this problem, we have developed a 3D silicone meniscus implant which is (1) cytocompatible, (2) resistant to cyclic loading and mechanically similar to native meniscus, and (3) directly 3D printable. The main focus of this study is to determine whether the purity, composition, structure, dimensions and mechanical properties of silicone implants are affected by the use of a custom-made in-house 3D-printer. We have used the phosphate buffer saline (PBS) absorption test, Fourier transform infrared (FTIR) spectroscopy, surface profilometry, thermo-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) to effectively assess and compare material properties between molded and 3D printed silicone samples.


2017 ◽  
Vol 56 (16) ◽  
pp. 4623-4628 ◽  
Author(s):  
Bernhard Baumann ◽  
Tomasz Jungst ◽  
Simone Stichler ◽  
Susanne Feineis ◽  
Oliver Wiltschka ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
pp. 292 ◽  
Author(s):  
Saman Naghieh ◽  
MD Sarker ◽  
N. K. Sharma ◽  
Zohra Barhoumi ◽  
Xiongbiao Chen

Extrusion-based bioprinting of hydrogel scaffolds is challenging due to printing-related issues, such as the lack of capability to precisely print or deposit hydrogels onto three-dimensional (3D) scaffolds as designed. Printability is an index to measure the difference between the designed and fabricated scaffold in the printing process, which, however, is still under-explored. While studies have been reported on printing hydrogel scaffolds from one or more hydrogels, there is limited knowledge on the printability of hydrogels and their printing processes. This paper presented our study on the printability of 3D printed hydrogel scaffolds, with a focus on identifying the influence of hydrogel composition and printing parameters/conditions on printability. Using the hydrogels synthesized from pure alginate or alginate with gelatin and methyl-cellulose, we examined their flow behavior and mechanical properties, as well as their influence on printability. To characterize the printability, we examined the pore size, strand diameter, and other dimensions of the printed scaffolds. We then evaluated the printability in terms of pore/strand/angular/printability and irregularity. Our results revealed that the printability could be affected by a number of factors and among them, the most important were those related to the hydrogel composition and printing parameters. This study also presented a framework to evaluate alginate hydrogel printability in a systematic manner, which can be adopted and used in the studies of other hydrogels for bioprinting.


2021 ◽  
Author(s):  
Salma Essam El-Habashy ◽  
Amal ElKamel ◽  
Marwa Essawy ◽  
Elsayeda-Zeinab Abdelfattah ◽  
Hoda M Eltaher

The versatility of 3D printing has rendered it an indispensable tool for the fabrication of composite hydrogel scaffolds, offering bone biomimetic features through inorganic and biopolymeric components as promising platforms...


Sign in / Sign up

Export Citation Format

Share Document