scholarly journals Development and validation of a point-of-care breath test for octane detection

The Analyst ◽  
2021 ◽  
Author(s):  
Laura Anna Hagens ◽  
Alwin RM Verschueren ◽  
Ariana Lammers ◽  
Nanon F.L. Heijnen ◽  
Marry R Smit ◽  
...  

Background There is a demand for a non-invasive bedside method to diagnose Acute Respiratory Distress Syndrome (ARDS). Octane was discovered and validated as the most important breath biomarker for diagnosis...

2021 ◽  
pp. 00154-2021
Author(s):  
Ruchi Sharma ◽  
Menglian Zhou ◽  
Mohamad Hakam Tiba ◽  
Brendan M. McCracken ◽  
Robert P. Dickson ◽  
...  

Despite the enormous impact on human health, acute respiratory distress syndrome (ARDS) is ill-defined, and its timely diagnosis is difficult, as is tracking the course of the syndrome. The objective of this pilot study was to explore the utility of breath collection and analysis methodologies to detect ARDS through changes in the volatile organic compound (VOC) profiles present in breath. Five male Yorkshire mix swine were studied and ARDS was induced utilising both direct and indirect lung injury. An automated portable gas chromatography device developed in-house was used for point of care breath analysis and to monitor swine breath hourly, starting from the initiation of the experiment until the development of ARDS, which was adjudicated based on the Berlin criteria at the breath sampling points and confirmed by lung biopsy at the end of the experiment. A total of 67 breath samples (chromatograms) were collected and analyzed. Through machine learning, principal component analysis, and linear discrimination analysis, seven VOCs biomarkers were identified that distinguished ARDS. These represent seven of the nine biomarkers found in our breath analysis study of human ARDS corroborating our findings. We also demonstrated that breath analysis detects changes 1–6 h earlier than the clinical adjudication based on the Berlin criteria. The findings provide proof of concept that breath analysis can be used for the identification of early changes associated with ARDS pathogenesis in swine. Its clinical application could provide intensive care clinicians with a non-invasive diagnostic tool for early detection and continuous monitoring of ARDS.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Johannes Herrmann ◽  
Quirin Notz ◽  
Tobias Schlesinger ◽  
Jan Stumpner ◽  
Markus Kredel ◽  
...  

Abstract Background Coronavirus disease 2019 (COVID-19) associated coagulopathy (CAC) leads to thromboembolic events in a high number of critically ill COVID-19 patients. However, specific diagnostic or therapeutic algorithms for CAC have not been established. In the current study, we analyzed coagulation abnormalities with point-of-care testing (POCT) and their relation to hemostatic complications in patients suffering from COVID-19 induced Acute Respiratory Distress Syndrome (ARDS). Our hypothesis was that specific diagnostic patterns can be identified in patients with COVID-19 induced ARDS at risk of thromboembolic complications utilizing POCT. Methods This is a single-center, retrospective observational study. Longitudinal data from 247 rotational thromboelastometries (Rotem®) and 165 impedance aggregometries (Multiplate®) were analysed in 18 patients consecutively admitted to the ICU with a COVID-19 induced ARDS between March 12th to June 30th, 2020. Results Median age was 61 years (IQR: 51–69). Median PaO2/FiO2 on admission was 122 mmHg (IQR: 87–189), indicating moderate to severe ARDS. Any form of hemostatic complication occurred in 78 % of the patients with deep vein/arm thrombosis in 39 %, pulmonary embolism in 22 %, and major bleeding in 17 %. In Rotem® elevated A10 and maximum clot firmness (MCF) indicated higher clot strength. The delta between EXTEM A10 minus FIBTEM A10 (ΔA10) > 30 mm, depicting the sole platelet-part of clot firmness, was associated with a higher risk of thromboembolic events (OD: 3.7; 95 %CI 1.3–10.3; p = 0.02). Multiplate® aggregometry showed hypoactive platelet function. There was no correlation between single Rotem® and Multiplate® parameters at intensive care unit (ICU) admission and thromboembolic or bleeding complications. Conclusions Rotem® and Multiplate® results indicate hypercoagulability and hypoactive platelet dysfunction in COVID-19 induced ARDS but were all in all poorly related to hemostatic complications..


2021 ◽  
Vol 82 (6) ◽  
pp. 1-9
Author(s):  
M Gabrielli ◽  
F Valletta ◽  
F Franceschi ◽  

Ventilatory support is vital for the management of severe forms of COVID-19. Non-invasive ventilation is often used in patients who do not meet criteria for intubation or when invasive ventilation is not available, especially in a pandemic when resources are limited. Despite non-invasive ventilation providing effective respiratory support for some forms of acute respiratory failure, data about its effectiveness in patients with viral-related pneumonia are inconclusive. Acute respiratory distress syndrome caused by severe acute respiratory syndrome-coronavirus 2 infection causes life-threatening respiratory failure, weakening the lung parenchyma and increasing the risk of barotrauma. Pulmonary barotrauma results from positive pressure ventilation leading to elevated transalveolar pressure, and in turn to alveolar rupture and leakage of air into the extra-alveolar tissue. This article reviews the literature regarding the use of non-invasive ventilation in patients with acute respiratory failure associated with COVID-19 and other epidemic or pandemic viral infections and the related risk of barotrauma.


Sign in / Sign up

Export Citation Format

Share Document