scholarly journals Hidden polymorphism of FAPbI3 discovered by Raman spectroscopy

Author(s):  
Josefa Ibaceta-Jaña ◽  
Ruslan Muydinov ◽  
Pamela Rosado ◽  
Sri Hari Bharath Vinoth Kumar ◽  
Rene Gunder ◽  
...  

Formamidinium lead iodide (FAPbI3) can exhibit polymorphism at ambient conductions. Three different structural configurations and their thermally activated phase transitions are identified by temperature dependent micro-Raman spectroscopy.

2020 ◽  
Vol 235 (6-7) ◽  
pp. 213-223
Author(s):  
Hilke Petersen ◽  
Lars Robben ◽  
Thorsten M. Gesing

AbstractThe temperature-dependent structure-property relationships of the aluminosilicate perrhenate sodalite |Na8(ReO4)2|[AlSiO4]6 (ReO4-SOD) were analysed via powder X-ray diffraction (PXRD), Raman spectroscopy and heat capacity measurements. ReO4-SOD shows two phase transitions in the investigated temperature range (13 K < T < 1480 K). The first one at 218.6(1) K is correlated to the transition of dynamically ordered $P\overline{4}3n$ (> 218.6(1 K) to a statically disordered (<218.6(1) K) SOD template in $P\overline{4}3n$. The loss of the dynamics of the template anion during cooling causes an increase of disorder, indicated by an unusual intensity decrease of the 011-reflection and an increase of the Re-O2 bond length with decreasing temperature. Additionally, Raman spectroscopy shows a distortion of the ReO4 anion. Upon heating the thermal expansion of the sodalite cage originated in the tilt-mechanism causes the second phase transition at 442(1) K resulting in a symmetry-increase from $P\overline{4}3n$ to $Pm\overline{3}n$, the structure with the sodalites full framework expansion. Noteworthy is the high decomposition temperature of 1320(10) K.


2014 ◽  
Vol 105 (10) ◽  
pp. 102909 ◽  
Author(s):  
Chao Chen ◽  
Hao Deng ◽  
Xiaobing Li ◽  
Haiwu Zhang ◽  
Ting Huang ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4754
Author(s):  
Rosivaldo Xavier da Silva ◽  
Carlos William de Araujo Paschoal ◽  
Clenilton Costa dos Santos ◽  
Alberto García-Fernández ◽  
Jorge Salgado-Beceiro ◽  
...  

Temperature-dependent Raman scattering and differential scanning calorimetry were applied to the study of the hybrid organic-inorganic azide-perovskite [(CH3)4N][Cd(N3)3], a compound with multiple structural phase transitions as a function of temperature. A significant entropy variation was observed associated to such phase transitions, |∆S| ~ 62.09 J·kg−1 K−1, together with both a positive high barocaloric (BC) coefficient |δTt/δP| ~ 12.39 K kbar−1 and an inverse barocaloric (BC) coefficient |δTt/δP| ~ −6.52 kbar−1, features that render this compound interesting for barocaloric applications. As for the obtained Raman spectra, they revealed that molecular vibrations associated to the NC4, N3– and CH3 molecular groups exhibit clear anomalies during the phase transitions, which include splits and discontinuity in the phonon wavenumber and lifetime. Furthermore, variation of the TMA+ and N3– modes with temperature revealed that while some modes follow the conventional red shift upon heating, others exhibit an unconventional blue shift, a result which was related to the weakening of the intermolecular interactions between the TMA (tetramethylammonium) cations and the azide ligands and the concomitant strengthening of the intramolecular bondings. Therefore, these studies show that Raman spectroscopy is a powerful tool to gain information about phase transitions, structures and intermolecular interactions between the A-cation and the framework, even in complex hybrid organic-inorganic perovskites with highly disordered phases.


2021 ◽  
Vol 01 ◽  
Author(s):  
Manavendra P. Singh ◽  
Sumarlang Ryntathiang ◽  
Sivarama Krishnan ◽  
Pramoda K. Nayak

Background: Topological insulator (TI), Bi2Te3 is a new class of the quantum materials. Having ultralow dissipation surface states, TIs hold great promise toward different potential applications. Micro-Raman spectroscopy is a conventional and non-destructive technique, which has been widely used to characterize the structural and electronic properties of the thermoelectric materials. Objective: To study power dependent and temperature dependent Raman spectra of Bi2Te3 nano flakes on SiO2/Si substrate to estimate the temperature coefficient and thermal conductivity of these flakes for possible application of this material in thermoelectrics. Method: Bi2Te3 flakes of different thicknesses were mechanically exfoliated from high quality bulk Bi2Te3 crystal using scotch tape on 300 nm SiO2/ Si substrates. The power dependent and temperature dependent Raman spectra were acquired with the help of HORIBA LabRAM confocal micro-Raman system in a back scattering geometry. Result: . The observed power dependent and temperature dependent Raman spectra of Bi2Te3 nano flakes follow the same trend as discussed in various literatures. From temperature coefficient and power coefficient values, the in plane thermal conductivity has been estimated, which is found to be in the order of 10 2 W/m-K. The enhancement in the thermal conductivity suggests that the underlying substrate significantly affects the heat dissipation of the Bi2Te3 flake based on the coupling strength with Bi2Te3. Conclusion: This work provides a good platform to understand the role of substrate on the thermal conductivity of exfoliated Bi2Te3 nano flakes and this study can be extended to other substrates.


1998 ◽  
Author(s):  
I. De Wolf ◽  
G. Groeseneken ◽  
H.E. Maes ◽  
M. Bolt ◽  
K. Barla ◽  
...  

Abstract It is shown, using micro-Raman spectroscopy, that Shallow Trench Isolation introduces high stresses in the active area of silicon devices when wet oxidation steps are used. These stresses result in defect formation in the active area, leading to high diode leakage currents. The stress levels are highest near the outer edges of line structures and at square structures. They also increase with decreasing active area dimensions.


2021 ◽  
Vol 37 ◽  
pp. 102910
Author(s):  
Jhih-Huei Liu ◽  
Weiying Ke ◽  
Ming-chorng Hwang ◽  
Kuang Yu Chen

Author(s):  
D. J. Bailey ◽  
M. C. Stennett ◽  
J. Heo ◽  
N. C. Hyatt

AbstractSEM–EDX and Raman spectroscopy analysis of radioactive compounds is often restricted to dedicated instrumentation, within radiological working areas, to manage the hazard and risk of contamination. Here, we demonstrate application of WetSEM® capsules for containment of technetium powder materials, enabling routine multimodal characterisation with general user instrumentation, outside of a controlled radiological working area. The electron transparent membrane of WetSEM® capsules enables SEM imaging of submicron non-conducting technetium powders and acquisition of Tc Lα X-ray emission, using a low cost desktop SEM–EDX system, as well as acquisition of good quality μ-Raman spectra using a 532 nm laser.


Sign in / Sign up

Export Citation Format

Share Document