High throughput screening of promising lead-free inorganic halide double perovskites via first-principles calculations

Author(s):  
Xun-Lei Ding ◽  
Zhengyang Gao ◽  
Gaungyang Mao ◽  
Shengyi Chen ◽  
Yang Bai ◽  
...  

Perovskite solar cells (PSCs) have been intensively investigated and made great progress due to their high photoelectric conversion efficiency and low production cost. However, poor stability and the toxicity of...

2019 ◽  
Vol 7 (18) ◽  
pp. 11265-11271 ◽  
Author(s):  
Yuliang Mao ◽  
Congsheng Xu ◽  
Jianmei Yuan ◽  
Hongquan Zhao

Based on first-principles calculations, we demonstrated that a GeSe/SnSe heterostructure has a type-II band alignment and a direct band gap. The predicted photoelectric conversion efficiency (PCE) for the GeSe/SnSe heterostructure reaches 21.47%.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1565
Author(s):  
Yuliang Mao ◽  
Zheng Guo ◽  
Jianmei Yuan ◽  
Tao Sun

Based on first-principles calculations, we propose van der Waals (vdW) heterojunctions composed of one-dimensional carbon nanotubes (CNTs) and two-dimensional GeSe. Our calculations show that (n,0)CNT/GeSe (n = 5–11) heterojunctions are stable through weak vdW interactions. Among these heterojunctions, (n,0)CNT/GeSe (n = 5–7) exhibit metallic properties, while (n,0)CNT/GeSe (n = 8–11) have a small bandgap, lower than 0.8 eV. The absorption coefficient of (n,0)CNT/GeSe (n = 8–11) in the ultraviolet and infrared regions is around 105 cm−1. Specifically, we found that (11,0)CNT/GeSe exhibits type-II band alignment and has a high photoelectric conversion efficiency of 17.29%, which suggests prospective applications in photoelectronics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Faizan ◽  
K. C. Bhamu ◽  
Ghulam Murtaza ◽  
Xin He ◽  
Neeraj Kulhari ◽  
...  

AbstractThe highly successful PBE functional and the modified Becke–Johnson exchange potential were used to calculate the structural, electronic, and optical properties of the vacancy-ordered double perovskites A2BX6 (A = Rb, Cs; B = Sn, Pd, Pt; X = Cl, Br, and I) using the density functional theory, a first principles approach. The convex hull approach was used to check the thermodynamic stability of the compounds. The calculated parameters (lattice constants, band gap, and bond lengths) are in tune with the available experimental and theoretical results. The compounds, Rb2PdBr6 and Cs2PtI6, exhibit band gaps within the optimal range of 0.9–1.6 eV, required for the single-junction photovoltaic applications. The photovoltaic efficiency of the studied materials was assessed using the spectroscopic-limited-maximum-efficiency (SLME) metric as well as the optical properties. The ideal band gap, high dielectric constants, and optimum light absorption of these perovskites make them suitable for high performance single and multi-junction perovskite solar cells.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 978
Author(s):  
Chaoqun Lu ◽  
Weijia Zhang ◽  
Zhaoyi Jiang ◽  
Yulong Zhang ◽  
Cong Ni

The hole transport layer (HTL) is one of the main factors affecting the efficiency and stability of perovskite solar cells (PSCs). However, obtaining HTLs with the desired properties through current preparation techniques remains a challenge. In the present study, we propose a new method which can be used to achieve a double-layer HTL, by inserting a CuI layer between the perovskite layer and Spiro-OMeTAD layer via a solution spin coating process. The CuI layer deposited on the surface of the perovskite film directly covers the rough perovskite surface, covering the surface defects of the perovskite, while a layer of CuI film avoids the defects caused by Spiro-OMetad pinholes. The double-layer HTLs improve roughness and reduce charge recombination of the Spiro-OMeTAD layer, thereby resulting in superior hole extraction capabilities and faster hole mobility. The CuI/Spiro-OMeTAD double-layer HTLs-based devices were prepared in N2 gloveboxes and obtained an optimized PCE (photoelectric conversion efficiency) of 17.44%. Furthermore, their stability was improved due to the barrier effect of the inorganic CuI layer on the entry of air and moisture into the perovskite layer. The results demonstrate that another deposited CuI film is a promising method for realizing high-performance and air-stable PSCs.


2015 ◽  
Vol 3 (17) ◽  
pp. 8926-8942 ◽  
Author(s):  
Wan-Jian Yin ◽  
Ji-Hui Yang ◽  
Joongoo Kang ◽  
Yanfa Yan ◽  
Su-Huai Wei

First-principles calculations help to understand the fundamental mechanisms of the emerging perovskite solar cells and guide further developments.


RSC Advances ◽  
2020 ◽  
Vol 10 (25) ◽  
pp. 14679-14688
Author(s):  
Liping Peng ◽  
Wei Xie

Perovskite solar cells based on the lead free hybrid organic–inorganic CH3NH3SnI3 (MASnI3) and CH4N2SnI3 (FASnI3) perovskites were fabricated, and the photoelectric conversion efficiency (PCE) was assessed.


2018 ◽  
Vol 6 (4) ◽  
pp. 1809-1815 ◽  
Author(s):  
Peng Zhang ◽  
Jingxiu Yang ◽  
Su-Huai Wei

The overall electronic properties of double perovskite A2B+B3+X6 (A = Cs, B+/B3+ = metal cation, and X = halogen anion) as function of atomic orbitals and site occupation of the B+ and B3+ cations are studied by using first-principles calculations and symmetry analysis for high efficiency solar cell absorbers.


Sign in / Sign up

Export Citation Format

Share Document