Effect of water on the effective Goldschmidt tolerance factor and photoelectric conversion efficiency of organic–inorganic perovskite: insights from first-principles calculations

2017 ◽  
Vol 19 (23) ◽  
pp. 14955-14960 ◽  
Author(s):  
Zhen-Kun Tang ◽  
Ya-Nan Zhu ◽  
Zhi-Feng Xu ◽  
Li-Min Liu

Appropriate interstitial water molecules permit higher efficiency in the perovskite structure.

2019 ◽  
Vol 7 (18) ◽  
pp. 11265-11271 ◽  
Author(s):  
Yuliang Mao ◽  
Congsheng Xu ◽  
Jianmei Yuan ◽  
Hongquan Zhao

Based on first-principles calculations, we demonstrated that a GeSe/SnSe heterostructure has a type-II band alignment and a direct band gap. The predicted photoelectric conversion efficiency (PCE) for the GeSe/SnSe heterostructure reaches 21.47%.


Author(s):  
Xun-Lei Ding ◽  
Zhengyang Gao ◽  
Gaungyang Mao ◽  
Shengyi Chen ◽  
Yang Bai ◽  
...  

Perovskite solar cells (PSCs) have been intensively investigated and made great progress due to their high photoelectric conversion efficiency and low production cost. However, poor stability and the toxicity of...


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1565
Author(s):  
Yuliang Mao ◽  
Zheng Guo ◽  
Jianmei Yuan ◽  
Tao Sun

Based on first-principles calculations, we propose van der Waals (vdW) heterojunctions composed of one-dimensional carbon nanotubes (CNTs) and two-dimensional GeSe. Our calculations show that (n,0)CNT/GeSe (n = 5–11) heterojunctions are stable through weak vdW interactions. Among these heterojunctions, (n,0)CNT/GeSe (n = 5–7) exhibit metallic properties, while (n,0)CNT/GeSe (n = 8–11) have a small bandgap, lower than 0.8 eV. The absorption coefficient of (n,0)CNT/GeSe (n = 8–11) in the ultraviolet and infrared regions is around 105 cm−1. Specifically, we found that (11,0)CNT/GeSe exhibits type-II band alignment and has a high photoelectric conversion efficiency of 17.29%, which suggests prospective applications in photoelectronics.


2020 ◽  
Vol 49 (12) ◽  
pp. 3766-3774 ◽  
Author(s):  
Jianping Li ◽  
Dai Wu ◽  
Chunlei Wang ◽  
Ding Liu ◽  
Weilin Chen ◽  
...  

The strategy of constructing a 2D flexible superlattice polyoxometalate/rGO heterojunction is proposed to improve the photoelectric conversion efficiency of photovoltaic devices.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ho Chang ◽  
Chih-Hao Chen ◽  
Mu-Jung Kao ◽  
Hsin-Han Hsiao

This paper aims to develop photoanode material required by dye-sensitized solar cells. The material prepared is in the form of Ag@TiO2core-shell-type nanocomposites. This material is used to replace the titanium oxide powder commonly used in general DSSCs. The prepared Ag@TiO2core-shell-type nanocomposites are mixed with Degussa P25 TiO2in different proportions. Triton X-100 is added and polyethylene glycol (PEG) at 20 wt% is used as a polymer additive. This study tests the particle size and material properties of Ag@TiO2core-shell-type nanocomposites and measures the photoelectric conversion efficiency and IPCE of DSSCs. Experimental results show that the DSSC prepared by Ag@TiO2core-shell-type nanocomposites can achieve a photoelectric conversion efficiency of 3.67%. When Ag@TiO2core-shell-type nanocomposites are mixed with P25 nanoparticles in specific proportions, and when the thickness of the photoelectrode thin film is 28 μm, the photoelectric conversion efficiency can reach 6.06%, with a fill factor of 0.52, open-circuit voltage of 0.64V, and short-circuit density of 18.22 mAcm−2. Compared to the DSSC prepared by P25 TiO2only, the photoelectric conversion efficiency can be raised by 38% under the proposed approach.


1999 ◽  
Vol 574 ◽  
Author(s):  
Nicola A. Hill ◽  
Karin M. Rabe

AbstractWe present results of first principles calculations which indicate the simultaneous occurrence of ferromagnetism and ferroelectricity in perovskite structure bismuth manganite, BiMnO3.


2011 ◽  
Vol 216 ◽  
pp. 355-359 ◽  
Author(s):  
Hui Zhong ◽  
Yong Yi Gao ◽  
Ren Long Zhou ◽  
Bing Ju Zhou ◽  
Li Qiang Tang ◽  
...  

The effect of grating structure on the photoelectric conversion efficiency of solar cells is studied with the finite-difference time-domain method. The influence of grating shape, height and the thickness of coated metal film is analysed. It is found that the variation of grating shape and height makes great changes of energy storage, especially of the photoelectric conversion efficiency and energy storage of the triangle grating. The comparison between un-optimized and optimized surface grating structure on solar cells shows that the optimized grating surface significantly increases the energy storage capability and greatly improves the efficiency.


Sign in / Sign up

Export Citation Format

Share Document