Surface defect engineered CeO2-x by ultrasound treatment for superior photocatalytic H2 production and water treatment

Author(s):  
Sujay Shekar G. C. ◽  
Khaled Alkanad ◽  
Gubran Alnaggar ◽  
Nabil A Zaqri ◽  
Mohammed Abdullah Bajiri ◽  
...  

Surface defects on semiconductor photocatalyst display incredible light absorption bandwidth and function as highly active sites for oxidation processes by interacting with surface band structure. Accordingly, engineering the photocatalyst with...

2016 ◽  
Vol 4 (36) ◽  
pp. 13803-13808 ◽  
Author(s):  
Guiyang Yu ◽  
Wenxiang Zhang ◽  
Yanjun Sun ◽  
Tengfeng Xie ◽  
Ai-Min Ren ◽  
...  

A synergistic strategy of spatial bandgap engineering and surface defect is efficient to construct a highly active semiconductor photocatalyst.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 706
Author(s):  
Xinglong Feng ◽  
Xianwen Gao ◽  
Ling Luo

It is important to accurately classify the defects in hot rolled steel strip since the detection of defects in hot rolled steel strip is closely related to the quality of the final product. The lack of actual hot-rolled strip defect data sets currently limits further research on the classification of hot-rolled strip defects to some extent. In real production, the convolutional neural network (CNN)-based algorithm has some difficulties, for example, the algorithm is not particularly accurate in classifying some uncommon defects. Therefore, further research is needed on how to apply deep learning to the actual detection of defects on the surface of hot rolled steel strip. In this paper, we proposed a hot rolled steel strip defect dataset called Xsteel surface defect dataset (X-SDD) which contains seven typical types of hot rolled strip defects with a total of 1360 defect images. Compared with the six defect types of the commonly used NEU surface defect database (NEU-CLS), our proposed X-SDD contains more types. Then, we adopt the newly proposed RepVGG algorithm and combine it with the spatial attention (SA) mechanism to verify the effect on the X-SDD. Finally, we apply multiple algorithms to test on our proposed X-SDD to provide the corresponding benchmarks. The test results show that our algorithm achieves an accuracy of 95.10% on the testset, which exceeds other comparable algorithms by a large margin. Meanwhile, our algorithm achieves the best results in Macro-Precision, Macro-Recall and Macro-F1-score metrics.


Author(s):  
Yuan Gao ◽  
Xiaoguang Duan ◽  
Bin Li ◽  
Qianqian Jia ◽  
Yang Li ◽  
...  

Persulfate-based advanced oxidation processes are promising technologies to solve water pollution. In this work, single iron atoms are anchored in three-dimensional N-doped carbon nanosheets by a chemical vapor deposition (CVD)...


Nanoscale ◽  
2021 ◽  
Author(s):  
Xianyun Peng ◽  
Junrong Hou ◽  
Yuying Mi ◽  
Jiaqiang Sun ◽  
Gaocan Qi ◽  
...  

Electrocatalytic hydrogen evolution reaction (HER) for H2 production is essential for future renewable and clean energy technology. Screening energy-saving, low-cost, and highly active catalysts efficiently, however, is still a grand...


2021 ◽  
pp. 1-18
Author(s):  
Hui Liu ◽  
Boxia He ◽  
Yong He ◽  
Xiaotian Tao

The existing seal ring surface defect detection methods for aerospace applications have the problems of low detection efficiency, strong specificity, large fine-grained classification errors, and unstable detection results. Considering these problems, a fine-grained seal ring surface defect detection algorithm for aerospace applications is proposed. Based on analysis of the stacking process of standard convolution, heat maps of original pixels in the receptive field participating in the convolution operation are quantified and generated. According to the generated heat map, the feature extraction optimization method of convolution combinations with different dilation rates is proposed, and an efficient convolution feature extraction network containing three kinds of dilated convolutions is designed. Combined with the O-ring surface defect features, a multiscale defect detection network is designed. Before the head of multiscale classification and position regression, feature fusion tree modules are added to ensure the reuse and compression of the responsive features of different receptive fields on the same scale feature maps. Experimental results show that on the O-rings-3000 testing dataset, the mean condition accuracy of the proposed algorithm reaches 95.10% for 5 types of surface defects of aerospace O-rings. Compared with RefineDet, the mean condition accuracy of the proposed algorithm is only reduced by 1.79%, while the parameters and FLOPs are reduced by 35.29% and 64.90%, respectively. Moreover, the proposed algorithm has good adaptability to image blur and light changes caused by the cutting of imaging hardware, thus saving the cost.


Author(s):  
Kaiyao Wu ◽  
Fei Chu ◽  
Yuying Meng ◽  
Kaveh Edalati ◽  
Qingsheng Gao ◽  
...  

Transition metal-based amorphous alloys have attracted increasing attention as precious-metal-free electrocatalysts for oxygen evolution reaction (OER) of water splitting due to their high macro-conductivity and abundant surface active sites. However,...


2016 ◽  
Vol 4 (19) ◽  
pp. 7437-7444 ◽  
Author(s):  
Jonathan M. Polfus ◽  
Tor S. Bjørheim ◽  
Truls Norby ◽  
Rune Bredesen

First-principles calculations were utilized to elucidate the complete defect equilibria of surfaces of proton conducting BaZrO3, encompassing charged species adsorbed to the surface, defects in the surface layer as well as in the subsurface space-charge region and bulk.


Author(s):  
Jesús Andrés Tavizón Pozos ◽  
Gerardo Chávez Esquivel ◽  
Ignacio Cervantes Arista ◽  
José Antonio de los Reyes Heredia ◽  
Víctor Alejandro Suárez Toriello

Abstract The influence of Al2O3–ZrO2 and TiO2–ZrO2 supports on NiMo-supported catalysts at a different sulfur concentration in a model hydrodeoxygenation (HDO)-hydrodesulfurization (HDS) co-processing reaction has been studied in this work. A competition effect between phenol and dibenzothiophene (DBT) for active sites was evidenced. The competence for the active sites between phenol and DBT was measured by comparison of the initial reaction rate and selectivity at two sulfur concentrations (200 and 500 ppm S). NiMo/TiO2–ZrO2 was almost four-fold more active in phenol HDO co-processed with DBT than NiMo/Al2O3–ZrO2 catalyst. Consequently, more labile active sites are present on NiMo/TiO2–ZrO2 than in NiMo/Al2O3–ZrO2 confirmed by the decrease in co-processing competition for the active sites between phenol and DBT. DBT molecules react at hydrogenolysis sites (edge and rim) preferentially so that phenol reacts at hydrogenation sites (edge and edge). However, the hydrogenated capacity would be lost when the sulfur content was increased. In general, both catalysts showed similar functionalities but different degrees of competition according to the highly active NiMoS phase availability. TiO2–ZrO2 as the support provided weaker metal-support interaction than Al2O3–ZrO2, generating a larger fraction of easily reducible octahedrally coordinated Mo- and Ni-oxide species, causing that NiMo/TiO2–ZrO2 generated precursors of MoS2 crystallites with a longer length and stacking but with a higher degree of Ni-promotion than NiMo/Al2O3–ZrO2 catalyst.


Author(s):  
Nicolas Peyret ◽  
Gaël Chevallier ◽  
Jean-Luc Dion

In structural dynamics, the prediction of damping remains the biggest challenge. This paper deals with the energy losses caused by micro-slip in a nominally planar interface of a structure. This paper proposes an analytical and experimental study of flexural vibrations of a clamped-clamped beam with innovative position of the interfaces. The objective of this test bench is to characterize the global rheology of the interface. The proposed model aims to characterize this rheology based on local settings of the interface. First, the test bench is described and the choice of the position of the interface is justified. The experimental bench and the dynamic behavior of this structure are presented. We propose to illustrate the mechanism of energy losses by micro-slip by making a comparison between the behavior of a “monolithic” beam and a sectioned beam. Secondly, a modeling of the interface taking into account the surface defect is presented. The energy dissipated by friction in the interface is calculated during a loading cycle. This leads to a computation of the dissipated energy and thus to a nonlinear loss factor. Finally, we confront the loss factor calculated analytically and the measured one.


Sign in / Sign up

Export Citation Format

Share Document