The design and synthesis of heterogeneous catalysts for environmental applications

2021 ◽  
Vol 50 (14) ◽  
pp. 4765-4771
Author(s):  
Rupak Chatterjee ◽  
Piyali Bhanja ◽  
Asim Bhaumik

In this Frontier article, we have highlighted some of the major synthetic routes for the design of porous heterogeneous catalysts and their potential use in several environmentally challenging chemical transformations.

2020 ◽  
Vol 24 (21) ◽  
pp. 2475-2497
Author(s):  
Andrea Verónica Rodríguez-Mayor ◽  
German Jesid Peralta-Camacho ◽  
Karen Johanna Cárdenas-Martínez ◽  
Javier Eduardo García-Castañeda

Glycoproteins and glycopeptides are an interesting focus of research, because of their potential use as therapeutic agents, since they are related to carbohydrate-carbohydrate, carbohydrate-protein, and carbohydrate-lipid interactions, which are commonly involved in biological processes. It has been established that natural glycoconjugates could be an important source of templates for the design and development of molecules with therapeutic applications. However, isolating large quantities of glycoconjugates from biological sources with the required purity is extremely complex, because these molecules are found in heterogeneous environments and in very low concentrations. As an alternative to solving this problem, the chemical synthesis of glycoconjugates has been developed. In this context, several methods for the synthesis of glycopeptides in solution and/or solid-phase have been reported. In most of these methods, glycosylated amino acid derivatives are used as building blocks for both solution and solid-phase synthesis. The synthetic viability of glycoconjugates is a critical parameter for allowing their use as drugs to mitigate the impact of microbial resistance and/or cancer. However, the chemical synthesis of glycoconjugates is a challenge, because these molecules possess multiple reaction sites and have a very specific stereochemistry. Therefore, it is necessary to design and implement synthetic routes, which may involve various protection schemes but can be stereoselective, environmentally friendly, and high-yielding. This review focuses on glycopeptide synthesis by recapitulating the progress made over the last 15 years.


2019 ◽  
Vol 16 (5) ◽  
pp. 709-729 ◽  
Author(s):  
Muhammad A. Rashid ◽  
Aisha Ashraf ◽  
Sahibzada S. Rehman ◽  
Shaukat A. Shahid ◽  
Adeel Mahmood ◽  
...  

Background:1,4-Diazepines are two nitrogen containing seven membered heterocyclic compounds and associated with a wide range of biological activities. Due to its medicinal importance, scientists are actively involved in the synthesis, reactions and biological evaluation of 1,4-diazepines since number of decades.Objective:The primary purpose of this review is to discuss the synthetic schemes and reactivity of 1,4- diazepines. This article also describes biological aspects of 1,4-diazepine derivatives, that can be usefully exploited for the pharmaceutical sector.Conclusion:This review summarizes the abundant literature on synthetic routes, chemical reactions and biological attributes of 1,4-diazepine derivatives. We concluded that 1,4-diazepines have significant importance due to their biological activities like antipsychotic, anxiolytic, anthelmintic, anticonvulsant, antibacterial, antifungal and anticancer. 1,4-diazepine derivatives with significant biological activities could be explored for potential use in the pharmaceutical industries.


2019 ◽  
Vol 19 (7) ◽  
pp. 842-874 ◽  
Author(s):  
Harbinder Singh ◽  
Nihar Kinarivala ◽  
Sahil Sharma

We live in a world with complex diseases such as cancer which cannot be cured with one-compound one-target based therapeutic paradigm. This could be due to the involvement of multiple pathogenic mechanisms. One-compound-various-targets stratagem has become a prevailing research topic in anti-cancer drug discovery. The simultaneous interruption of two or more targets has improved the therapeutic efficacy as compared to the specific targeted based therapy. In this review, six types of dual targeting agents along with some interesting strategies used for their design and synthesis are discussed. Their pharmacology with various types of the molecular interactions within their specific targets has also been described. This assemblage will reveal the recent trends and insights in front of the scientific community working in dual inhibitors and help them in designing the next generation of multi-targeted anti-cancer agents.


Author(s):  
Lijarani Biswal ◽  
Susanginee Nayak ◽  
Kulamani Parida

This review summarizes the possible synthetic routes, optical and morphological features to explore the 2D/2D interface and mechanism path in 2D/2D MXene/g-C3N4 nanocomposites for photocatalytic applications.


Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 576
Author(s):  
Antonio Vita

Among the metal-oxides, ceria represents one of the most promising materials for chemical transformations mainly for environmental applications and energy conversion systems [...]


Synthesis ◽  
2020 ◽  
Vol 52 (04) ◽  
pp. 504-520 ◽  
Author(s):  
Eszter Baráth

Based on the ever-increasing demand for optically pure compounds, the development of efficient methods to produce such products is very important. Homogeneous asymmetric catalysis occupies a prominent position in the ranking of chemical transformations, with transition metals coordinated to chiral ligands being applied extensively for this purpose. However, heterogeneous catalysts have the ability to further extend the field of asymmetric transformations, because of their beneficial properties such as high stability, ease of separation and regeneration, and the possibility to apply them in continuous processes. The main challenge is to find potential synthetic routes that can provide a chemically and thermally stable heterogeneous catalyst having the necessary chiral information, whilst keeping the catalytic activity and enantioselectivity equally high (or even higher) than the corresponding homogeneous counterpart. Within this short review, the most relevant immobilization modes and preparative strategies depending on the support material used are summarized. From the reaction scope viewpoint, metal catalysts supported on the various solid materials studied in (asymmetric) transfer hydrogenation of carbonyl compounds are selected and represent the main focus of the second part of this overview.1 Introduction2 Synthesis of Chiral Heterogeneous Catalysts2.1 Immobilization of Homogeneous Asymmetric Catalysts2.1.1 Immobilization on Inorganic Supports2.1.2 Immobilization on Organic Polymers as Supports2.1.3 Immobilization on Dendrimer-Type Materials as Supports2.1.4 Self-Supported Chiral Catalysts: Coordination Polymers2.1.5 Immobilization Using Non-Conventional Media2.2 Chirally Modified Metal Surfaces for Heterogeneous Asymmetric Catalysis3 Examples of Transfer Hydrogenation on Heterogeneous Catalysts3.1 Silicon-Immobilized Catalysts3.2 Carbon-Material-Immobilized Catalysts3.3 Polymer-Immobilized Catalysts3.4 Magnetic-Nanoparticle-Immobilized Catalysts4 Conclusions


BMC Chemistry ◽  
2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Hajar Karimi Askarani ◽  
Aida Iraji ◽  
Arezoo Rastegari ◽  
Syed Nasir Abbas Bukhari ◽  
Omidreza Firuzi ◽  
...  

Abstract To discover multifunctional agents for the treatment of Alzheimer's disease (AD), a new series of 1,2,3-triazole-chromenone derivatives were designed and synthesized based on the multi target-directed ligands approach. The in vitro biological activities included acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition as well as anti-Aβ aggregation, neuroprotective effects, and metal-chelating properties. The results indicated a highly selective BuChE inhibitory activity with an IC50 value of 21.71 μM for compound 10h as the most potent compound. Besides, compound 10h could inhibit self-induced Aβ1–42 aggregation and AChE-induced Aβ aggregation with 32.6% and 29.4% inhibition values, respectively. The Lineweaver–Burk plot and molecular modeling study showed that compound 10h targeted both the catalytic active site (CAS) and peripheral anionic site (PAS) of BuChE. It should be noted that compound 10h was able to chelate biometals. Thus, the designed scaffold could be considered as multifunctional agents in AD drug discovery developments.


Sign in / Sign up

Export Citation Format

Share Document