Towards improving the antibiotic elimination capacity of UiO-66 from contaminated water

2021 ◽  
Author(s):  
Sara Rojas ◽  
Ana Torres ◽  
Victor Dato ◽  
Fabrice Salles ◽  
David Ávila-Brande ◽  
...  

Antibiotics are found in natural waters, raising the concerns about their human and environmental toxicity and wide occurrence of antibiotic resistant bacteria. The antibiotic resistance crisis is attributed to the...

2020 ◽  
Vol 1 (2) ◽  
pp. 85-90
Author(s):  
Hadis Tavafi

Nowadays, in the poultry industry, antibiotics are used to treat, prevent, and enhance poultry growth and production efficiency. Their irregular consumption has resulted in the spread of antibiotic-resistant bacteria in this industry. Antibiotic-resistant bacteria in contaminated waters can be transmitted into soil. The purpose of this study was to investigate the antibiotic resistance pattern of bacteria isolated from the water of chicken slaughterhouses around Hamadan (Iran) province. In this study, 20 water samples were collected from four slaughterhouses in Hamadan province (during spring and summer 2019). Initial isolation and identification of the bacteria were performed by pour plate culture and biochemical tests. The disc diffusion method was applied to investigate the resistance pattern. This study presents 109 screened isolates. Of these, 57.8% E.coli, 35.7% Salmonella spp., and 6.42% Klebsiella spp. were detected. Antibiograms of isolates showed that in E.coli, 23.09% were resistant to four types of the antibiotic tetracycline, amoxicillin, gentamicin, and chloramphenicol, 76.19% had only one type of antibiotic. Antibiotics for Salmonella spp. showed that 35.9% were resistant to tetracycline, gentamicin, and chloramphenicol, 64.10% to only one type of antibiotic. Also, in Klebsiella spp., 85.71% were sensitive to antibiotics, and only 14.28% were resistant to tetracycline. Conclusion: The results showed that the rate of multiple antibiotic resistance is relatively high, and contaminated water has a high potential for soil contamination. Therefore, resistant bacteria become more stable in the environment, and the health of the environment will be endangered. Therefore, it is necessary to study the antimicrobial resistance patterns of bacteria to study and maintain the health of the environment.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 575
Author(s):  
Emi Nishimura ◽  
Masateru Nishiyama ◽  
Kei Nukazawa ◽  
Yoshihiro Suzuki

Information on the actual existence of antibiotic-resistant bacteria in rivers where sewage, urban wastewater, and livestock wastewater do not load is essential to prevent the spread of antibiotic-resistant bacteria in water environments. This study compared the antibiotic resistance profile of Escherichia coli upstream and downstream of human habitation. The survey was conducted in the summer, winter, and spring seasons. Resistance to one or more antibiotics at upstream and downstream sites was on average 18% and 20%, respectively, and no significant difference was observed between the survey sites. The resistance rates at the upstream site (total of 98 isolated strains) to each antibiotic were cefazolin 17%, tetracycline 12%, and ampicillin 8%, in descending order. Conversely, for the downstream site (total of 89 isolated strains), the rates were ampicillin 16%, cefazolin 16%, and tetracycline 1% in descending order. The resistance rate of tetracycline in the downstream site was significantly lower than that of the upstream site. Furthermore, phylogenetic analysis revealed that many strains showed different resistance profiles even in the same cluster of the Pulsed-Field Gel Electrophoresis (PFGE) pattern. Moreover, the resistance profiles differed in the same cluster of the upstream and the downstream sites. In flowing from the upstream to the downstream site, it is plausible that E. coli transmitted or lacked the antibiotic resistance gene.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1841
Author(s):  
Thanaporn Chuen-Im ◽  
Korapan Sawetsuwannakun ◽  
Pimmnapar Neesanant ◽  
Nakarin Kitkumthorn

Antibiotic resistance of microorganisms is a serious health problem for both humans and animals. Infection of these bacteria may result in therapy failure, leading to high mortality rates. During an early intervention program process, the Sea Turtle Conservation Center of Thailand (STCCT) has faced high mortality rates due to bacterial infection. Previously, investigation of juvenile turtle carcasses found etiological agents in tissue lesions. Further determination of sea water in the turtle holding tanks revealed a prevalence of these causative agents in water samples, implying association of bacterial isolates in rearing water and infection in captive turtles. In this study, we examined the antibiotic resistance of bacteria in seawater from the turtle holding tank for a management plan of juvenile turtles with bacterial infection. The examination was carried out in three periods: 2015 to 2016, 2018, and 2019. The highest isolate numbers were resistant to beta-lactam, whilst low aminoglycoside resistance rates were observed. No gentamicin-resistant isolate was detected. Seventy-nine isolates (71.17%) were resistant to at least one antibiotic. Consideration of resistant bacterial and antibiotic numbers over three sampling periods indicated increased risk of antibiotic-resistant bacteria to sea turtle health. Essentially, this study emphasizes the importance of antibiotic-resistant bacterial assessment in rearing seawater for sea turtle husbandry.


Sign in / Sign up

Export Citation Format

Share Document