Low-cost and Multi-level Structured NiFeMn Alloy@NiFeMn Oxyhydroxide Electrocatalysts for Highly-efficient Overall Water Splitting

Author(s):  
Zeyu Ge ◽  
Fei Wang ◽  
Junji Guo ◽  
Jungang Ma ◽  
Chunyan Yu ◽  
...  

Fabricating energy-saving, inexpensive and high activity electrocatalysts for overall water splitting has always been a significant challenge. Electrochemical deposition is considered as a promising method for large-scale industrial applications, but...

Nanoscale ◽  
2020 ◽  
Vol 12 (47) ◽  
pp. 24244-24250
Author(s):  
Wenjun He ◽  
Fangqing Wang ◽  
Dongbo Jia ◽  
Ying Li ◽  
Limin Liang ◽  
...  

The development of low-cost, high-activity, durable non-precious metal bifunctional electrocatalysts is of great importance in the production of hydrogen by water electrolysis.


Nanoscale ◽  
2019 ◽  
Vol 11 (48) ◽  
pp. 23318-23329 ◽  
Author(s):  
Lina Jia ◽  
Chen Li ◽  
Yaru Zhao ◽  
Bitao Liu ◽  
Shixiu Cao ◽  
...  

Non-precious metal-based electrocatalysts with high activity and stability for efficient hydrogen evolution reactions are of critical importance for low-cost and large-scale water splitting.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2572
Author(s):  
Yanfei Fan ◽  
Yan Liu ◽  
Hongyu Cui ◽  
Wen Wang ◽  
Qiaoyan Shang ◽  
...  

Strontium Titanate has a typical perovskite structure with advantages of low cost and photochemical stability. However, the wide bandgap and rapid recombination of electrons and holes limited its application in photocatalysis. In this work, a SrTiO3 material with surface oxygen vacancies was synthesized via carbon reduction under a high temperature. It was successfully applied for photocatalytic overall water splitting to produce clean hydrogen energy under visible light irradiation without any sacrificial reagent for the first time. The photocatalytic overall water splitting ability of the as-prepared SrTiO3-C950 is attributed to the surface oxygen vacancies that can make suitable energy levels for visible light response, improving the separation and transfer efficiency of photogenerated carriers.


2020 ◽  
Vol 49 (6) ◽  
pp. 1776-1784 ◽  
Author(s):  
Zhengang Guo ◽  
Xiaofeng Wang ◽  
Yangqin Gao ◽  
Zhifeng Liu

The development and utilization of low-cost and efficient electrocatalysts for overall water splitting is of great significance for future energy supplies.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Marius Rutkevičius ◽  
Jimmy Dong ◽  
Darren Tremelling ◽  
Julia Viertel ◽  
Samuel Beckford

Purpose Low friction polymer coatings able to withstand high loadings and many years of continuous operation are difficult to formulate at low cost, but could find many applications in industry. This study aims to analyze and compare friction and wear performance of novel polydopamine/polytetrafluoroethylene (PDA/PTFE) and traditional tin Babbitt coatings applied to an industrial journal bearing. Design/methodology/approach This paper tested PTFE based coating, co-deposited with PDA, a biopolymer allowing sea mussels to adhere to ocean rocks. This coating was deposited on flat steel substrates and on a curved cast iron hydrodynamic journal bearing surface. The flat substrates were analyzed with a tribometer and an optical microscope, while the coated bearing liners were tested in an industrial laboratory setting at different speeds and different radial loads. Findings PDA/PTFE coating showed 2-3 times lower friction compared to traditional tin Babbitt for flat substrates, but higher friction in the bearing liners. PDA/PTFE also showed considerable wear through coating delamination and abrasion in the bearing liners. Research limitations/implications Five future modifications to mitigate coating flaws are provided, which include modifications to coating thickness and its surface finish. Originality/value While the novel coating showed excellent results on flat substrates, coating performance in a large scale bearing was found to be poor. This study shows that coating preparation needs to be improved to avoid frictional losses and unwanted damage to bearings. We provide several routes that could improve coating performance in industrial applications.


Author(s):  
Kai Chang ◽  
Duy Thanh Tran ◽  
Jingqiang Wang ◽  
Nam Hoon Kim ◽  
Joong Hee Lee

Designing an earth-abundant electrode material with high activity and durability is a major challenge for water splitting to produce clean and green hydrogen energy. In this study, we reported a...


RSC Advances ◽  
2019 ◽  
Vol 9 (54) ◽  
pp. 31563-31571 ◽  
Author(s):  
Xiaoyan Hu ◽  
Xuemei Tian ◽  
Ying-Wu Lin ◽  
Zhonghua Wang

Efficient electrocatalytic overall water splitting is achieved with commercially-available and low-cost nickel foam and stainless steel mesh as cathode and anode electrodes.


2020 ◽  
Vol 13 (1) ◽  
pp. 102-110 ◽  
Author(s):  
Weiju Hao ◽  
Renbing Wu ◽  
Hao Huang ◽  
Xin Ou ◽  
Lincai Wang ◽  
...  

A family of catalytic electrodes fabricated by insulating substrates of paper, cloth and sponge which bring dramatic advantages of high performance, low cost, light weight, eco-friendliness, flexibility, and simple fabrication, were developed.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1336 ◽  
Author(s):  
Alejandro N. Colli ◽  
Hubert H. Girault ◽  
Alberto Battistel

Water electrolysis is a promising approach to hydrogen production from renewable energy sources. Alkaline water electrolyzers allow using non-noble and low-cost materials. An analysis of common assumptions and experimental conditions (low concentrations, low temperature, low current densities, and short-term experiments) found in the literature is reported. The steps to estimate the reaction overpotentials for hydrogen and oxygen reactions are reported and discussed. The results of some of the most investigated electrocatalysts, namely from the iron group elements (iron, nickel, and cobalt) and chromium are reported. Past findings and recent progress in the development of efficient anode and cathode materials appropriate for large-scale water electrolysis are presented. The experimental work is done involving the direct-current electrolysis of highly concentrated potassium hydroxide solutions at temperatures between 30 and 100 °C, which are closer to industrial applications than what is usually found in literature. Stable cell components and a good performance was achieved using Raney nickel as a cathode and stainless steel 316L as an anode by means of a monopolar cell at 75 °C, which ran for one month at 300 mA cm−2. Finally, the proposed catalysts showed a total kinetic overpotential of about 550 mV at 75 °C and 1 A cm−2.


Sign in / Sign up

Export Citation Format

Share Document