Improving the performance of all-inorganic perovskite light-emitting diodes through using polymeric interlayers with a pendant design

Author(s):  
Chiung-Han Chen ◽  
Yan-Cheng Lin ◽  
Yun-Fang Yang ◽  
Yun-Chi Chiang ◽  
Zhenchao Li ◽  
...  

Despite demonstrating higher photoluminescence quantum yield and better ambient and operational stability than organic-inorganic hybrid perovskites, all-inorganic perovskites encounter the problem of inferior film quality and interfacial electrical properties, which...

RSC Advances ◽  
2021 ◽  
Vol 11 (42) ◽  
pp. 26415-26420
Author(s):  
Yue Yao ◽  
Si-Wei Zhang ◽  
Zijian Liu ◽  
Chun-Yun Wang ◽  
Ping Liu ◽  
...  

A Bi3+-doped Cs2SnCl6 exhibits photoluminescence at around 456 nm and a photoluminescence quantum yield of 31%. The blue LED based on the Bi3+-doped Cs2SnCl6 phosphor exhibits a long life of 120 hours and a CIE color coordinates of (0.14, 0.11).


2018 ◽  
Vol 53 ◽  
pp. 01035
Author(s):  
Shulv Zhang ◽  
Yuhang Yin ◽  
Weiling Luan ◽  
Mengke Liu

Inorganic perovskite light-emitting diodes (PeLEDs) with full coverage and compact films were realized by doping a certain amount of PEO into perovskite emitting layer. The additive PEO (Polyethylene oxide) can not only improve the coverage of films by physically filling the pin-holes of crystal boundaries but also act as a protective layer to passivate the films, which successfully reduce the rate of non-radiative recombination, and enhance photoluminescence quantum yield (PLQY) of the CsPbBr3 films. In addition, PEO can also decrease the surface roughness of the perovskite films. As a result, the addition of PEO can improve the transport capability of carriers in PeLEDs. By optimizing the concentration of PEO, a maximum external quantum efficiency (EQE) of 0.26% and brightness of 1432 cd/m2 were achieved, which is significantly improved compared with previous work. The results presented in this paper shows that the additive PEO in perovskite precursor solution paves a new way for the application in PeLEDs.


Author(s):  
Ha Lim Lee ◽  
Kyung Hyung Lee ◽  
Jun Yeob Lee ◽  
Ho Jung Lee

High efficiency and long lifetime thermally activated delayed fluorescent (TADF) organic light-emitting diodes (OLEDs) were developed using a novel molecular design with two emission pathways for high photoluminescence quantum yield...


Author(s):  
Hyunsik Im ◽  
Atanu Jana ◽  
Vijaya Gopalan Sree ◽  
QIANKAI BA ◽  
Seong Chan Cho ◽  
...  

Lead-free, non-toxic transition metal-based phosphorescent organic–inorganic hybrid (OIH) compounds are promising for next-generation flat-panel displays and solid-state light-emitting devices. In the present study, we fabricate highly efficient phosphorescent green-light-emitting diodes...


Author(s):  
Jinmeng Xiang ◽  
Xiaoqi Zhao ◽  
Hao Suo ◽  
Minkun Jin ◽  
Xue Zhou ◽  
...  

Controlling the light environment of plant growth using phosphor-converted light-emitting diodes (pc-LEDs) is an important means to regulate the growth rhythm and enhance the yield, in which bluish violet light...


Author(s):  
Lin Yang ◽  
Bowen Fu ◽  
Xu Li ◽  
Hao Chen ◽  
Lili Li

All inorganic perovskite quantum dots (QDs) have received great attention owing to their excellent performance in optoelectronic applications. However, they often suffer from the defect-related photoluminescence (PL) quenching and phase...


Author(s):  
Wenjing Feng ◽  
Kebin Lin ◽  
Wenqiang Li ◽  
Xiangtian Xiao ◽  
Jianxun Lu ◽  
...  

Metal halide perovskite light-emitting diodes (PeLEDs) are promising in lighting and display application, and the corresponding device performance is highly dependent on the film quality of the active layer. However,...


Sign in / Sign up

Export Citation Format

Share Document