scholarly journals Organic–inorganic hybrid perovskite for low-cost and high-performance xerographic photoreceptors

RSC Advances ◽  
2021 ◽  
Vol 11 (35) ◽  
pp. 21754-21759
Author(s):  
Wei-Min Gu ◽  
Chuanxi Wang ◽  
Cai-Yan Gao ◽  
Xin-Heng Fan ◽  
Lian-Ming Yang ◽  
...  

MAPbI3 perovskite is first used as a light-absorbing charge-generating material for xerographic photoreceptors. The resultant photoreceptor exhibits excellent xerographic properties, and good environmental and electrical cycling stability.

Author(s):  
GYUMIN KIM ◽  
Eun Seo Oh ◽  
Ajay Kumar Jena ◽  
Tsutomu Miyasaka

Controlling the evaporation kinetics of the perovskite precursor (EKP) during the thermal annealing step of organic–inorganic hybrid perovskite solar cells (OIHPs) is important for achieving high performance. Although regulation of...


2020 ◽  
Vol MA2020-02 (29) ◽  
pp. 1984-1984
Author(s):  
Shu-Chi Wu ◽  
Shin-Yi Tang ◽  
Tzu-Yi Yang ◽  
Yuanfei Ai ◽  
Yu-Ze Chen ◽  
...  

2019 ◽  
Vol 7 (43) ◽  
pp. 13440-13446 ◽  
Author(s):  
Haeun Kwon ◽  
Saripally Sudhaker Reddy ◽  
Veera Murugan Arivunithi ◽  
Hyunjung Jin ◽  
Ho-Yeol Park ◽  
...  

A new class of HTM is designed by introducing the D–π–A approach. Dopant-free TPA-BP-OXD based solution processed planar i-PSCs on rigid and flexible substrates show PCEs of 15.46% and 12.90%, respectively, and the hysteresis is negligible with enhanced stability.


2014 ◽  
Vol 16 (13) ◽  
pp. 6033-6040 ◽  
Author(s):  
Yi-Fang Chiang ◽  
Jun-Yuan Jeng ◽  
Mu-Huan Lee ◽  
Shin-Rung Peng ◽  
Peter Chen ◽  
...  

A low temperature (<100 °C), flexible solar cell based on an organic–inorganic hybrid CH3NH3PbI3perovskite–fullerene planar heterojunction (PHJ) is successfully demonstrated.


2021 ◽  
pp. 1-18
Author(s):  
Yaobo Li ◽  
Zhaohan Li ◽  
Fangze Liu ◽  
Jing Wei

This organic-inorganic hybrid perovskite materials have attracted great attention by virtue of their high absorption coefficient, low cost and simple film deposition technique. Based on these advantages, perovskite solar cells have reached an impressive power conversion efficiency over 25%. However, the low-temperature process inevitably leads to a large number of defects in the perovskite film. These defects would exacerbate the carrier recombination, induce crystal degradation, phase transformation and seriously affect the performance of devices. Studying the defects in perovskite film is of great significance for the development of high-performance perovskite solar cells. Herein, the authors summarise the causes, distribution and features of defects, as well as their effects on the performance of perovskite solar cells. Furthermore, some defect-passivation strategies on perovskite film or the device, including grain boundary passivation, surface passivation, capping layer modification and charge transport layer passivation, are discussed, respectively. Lastly, some remaining challenges in the commercialisation of perovskite solar cells are proposed.


2022 ◽  
pp. 004051752110698
Author(s):  
Chuanli Su ◽  
Guangwei Shao ◽  
Qinghua Yu ◽  
Yaoli Huang ◽  
Jinhua Jiang ◽  
...  

Highly conductive, flexible, stretchable and lightweight electrode substrates are essential to meet the future demand on supercapacitors for wearable electronics. However, it is difficult to achieve the above characteristics simultaneously. In this study, ultrafine stainless-steel fibers (with a diameter of ≈30 μm) are knitted into stainless-steel meshes (SSMs) with a diamond structure for the fabrication of textile stretchable electrodes and current collectors. The electrodes are fabricated by utilizing an electrodeposited three-dimensional network graphene framework and poly(3,4-ethylenedioxythiophene) (PEDOT) coating on the SSM substrates via a two-step electrodeposition process, which show a specific capacitance of 77.09 F g−1 (0.14 A g−1) and superb cycling stability (91% capacitance retention after 5000 cycles). Furthermore, the assembled flexible stretchable supercapacitor based on the PEDOT/reduced graphene oxide (RGO)@SSM electrodes exhibits an areal capacitance (53 mF cm−2 at 0.1 mA cm−2), a good cycling stability (≈73% capacitance retention after 5000 cycles), rate capability (36 mF cm−2 at 5 mA cm−2), stretchable stability (≈78% capacitance retention at 10% strain for 500 stretching cycles) and outstanding flexibility and stability under various bending deformations. The assembled supercapacitors can illuminate a thermometer and a light-emitting diode, demonstrating their potential application as stretchable supercapacitors. This simple and low-cost method developed for fabricating lightweight, stretchable and stable high-performance supercapacitors offers new opportunities for future stretchable electronic devices.


RSC Advances ◽  
2014 ◽  
Vol 4 (52) ◽  
pp. 27488-27492 ◽  
Author(s):  
Xiayin Yao ◽  
Junhua Kong ◽  
Xiaosheng Tang ◽  
Dan Zhou ◽  
Chenyang Zhao ◽  
...  

Porous CoFe2O4 nanosheets are prepared via a low-cost and scalable process and are shown to be high-performance anode materials for lithium-ion batteries.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4894
Author(s):  
Jun-Yi Wang ◽  
Yen-Hsun Chi ◽  
Jin-Hua Huang

High-performance composite Pd membranes were successfully fabricated using electroless plating with an EDTA-free bath. The plating started with employing the one-time addition of hydrazine. In the experiment, the hydrazine concentrations and plating bath volumes were systematically varied to optimize the plating. The optimum composite Pd membrane tube showed high H2 permeance of 4.4 × 10−3 mol/m2 s Pa0.5 and high selectivity of 1.6 × 104, but poor cycling stability. Then, a method of sequential addition of the hydrazine from the high to low concentrations was employed. The resultant membrane, about 6 μm thick, still exhibited a high selectivity of 6.8 × 104 as well as a much-improved plating yield and cycling stability level; this membrane outperformed the membrane made using the unmodified plating technique with the EDTA-contained bath. This result indicates the EDTA-free bath combined with the sequential addition of hydrazine is a simple, low-cost, yet effective method for preparing thin, dense composite Pd membranes featuring high hydrogen permeation flux and high thermal durability.


Sign in / Sign up

Export Citation Format

Share Document