scholarly journals Comparison of the performance of magnetic targeting drug carriers prepared using two synthesis methods

RSC Advances ◽  
2021 ◽  
Vol 11 (34) ◽  
pp. 20670-20678
Author(s):  
Zhen Shi ◽  
Yazhen Wang ◽  
Shaobo Dong ◽  
Tianyu Lan

Roadmap for the synthesis of Fe3O4–PVA@SH using the step-by-step method and one-pot method.

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3918
Author(s):  
Anna Dymerska ◽  
Wojciech Kukułka ◽  
Marcin Biegun ◽  
Ewa Mijowska

The renewable energy technologies require electrocatalysts for reactions, such as the oxygen and/or hydrogen evolution reaction (OER/HER). They are complex electrochemical reactions that take place through the direct transfer of electrons. However, mostly they have high over-potentials and slow kinetics, that is why they require electrocatalysts to lower the over-potential of the reactions and enhance the reaction rate. The commercially used catalysts (e.g., ruthenium nanoparticles—Ru, iridium nanoparticles—Ir, and their oxides: RuO2, IrO2, platinum—Pt) contain metals that have poor stability, and are not economically worthwhile for widespread application. Here, we propose the spinel structure of nickel-cobalt oxide (NiCo2O4) fabricated to serve as electrocatalyst for OER. These structures were obtained by a facile two-step method: (1) One-pot solvothermal reaction and subsequently (2) pyrolysis or carbonization, respectively. This material exhibits novel rod-like morphology formed by tiny spheres. The presence of transition metal particles such as Co and Ni due to their conductivity and electron configurations provides a great number of active sites, which brings superior electrochemical performance in oxygen evolution and good stability in long-term tests. Therefore, it is believed that we propose interesting low-cost material that can act as a super stable catalyst in OER.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Giyaullah Habibullah ◽  
Jitka Viktorova ◽  
Tomas Ruml

AbstractNoble metals have played an integral part in human history for centuries; however, their integration with recent advances in nanotechnology and material sciences have provided new research opportunities in both academia and industry, which has resulted in a new array of advanced applications, including medical ones. Noble metal nanoparticles (NMNPs) have been of great importance in the field of biomedicine over the past few decades due to their importance in personalized healthcare and diagnostics. In particular, platinum, gold and silver nanoparticles have achieved the most dominant spot in the list, thanks to a very diverse range of industrial applications, including biomedical ones such as antimicrobial and antiviral agents, diagnostics, drug carriers and imaging probes. In particular, their superior resistance to extreme conditions of corrosion and oxidation is highly appreciated. Notably, in the past two decades there has been a tremendous advancement in the development of new strategies of more cost-effective and robust NMNP synthesis methods that provide materials with highly tunable physicochemical, optical and thermal properties, and biochemical functionalities. As a result, new advanced hybrid NMNPs with polymer, graphene, carbon nanotubes, quantum dots and core–shell systems have been developed with even more enhanced physicochemical characteristics that has led to exceptional diagnostic and therapeutic applications. In this review, we aim to summarize current advances in the synthesis of NMNPs (Au, Ag and Pt).


2009 ◽  
Vol 113 (50) ◽  
pp. 21042-21047 ◽  
Author(s):  
Shanhu Liu ◽  
Ruimin Xing ◽  
Feng Lu ◽  
Rohit Kumar Rana ◽  
Jun-Jie Zhu

2011 ◽  
Vol 8 (3) ◽  
pp. 188-192 ◽  
Author(s):  
Zheng-Jun Quan ◽  
Rong-Guo Ren ◽  
Yu-Xia Da ◽  
Zhang Zhang ◽  
Xi-Cun Wang

Synthesis ◽  
2020 ◽  
Author(s):  
Zbigniew Wróbel ◽  
Michał Tryniszewski ◽  
Robert Bujok ◽  
Roman Gańczarczyk

Tributyl- or triphenylphosphine promotes a one-pot, three-step method for the synthesis of differently substituted dibenzodiazepinones from N-aryl-2-nitroanilines. Pyridine analogues and the corresponding thiazepinones can also be formed using this method. The process involves deoxygenation of the nitro group, then formation of an iminophosphorane intermediate and its intramolecular condensation with a carboxyl group placed in the N-aryl group. The role of the carboxyl group in the formation of the iminophosphorane and the mode of cyclization are discussed.


RSC Advances ◽  
2018 ◽  
Vol 8 (13) ◽  
pp. 6789-6797 ◽  
Author(s):  
Xiangong Wang ◽  
Fang Zhao ◽  
Bo Pang ◽  
Xuping Qin ◽  
Shengyu Feng

TN hydrogels with high mechanical properties are prepared and they have potential application in biomaterials.


2019 ◽  
Vol 43 (30) ◽  
pp. 11934-11948 ◽  
Author(s):  
Prathap Somu ◽  
Subhankar Paul

Biodegradable ZnO nanoparticles with excellent biocompatibility prepared via a biogenic process have great potential as therapeutic agent-cum-drug carriers for cancer treatment.


2021 ◽  
Vol 23 (1) ◽  
pp. 236
Author(s):  
Vincenzo Patamia ◽  
Giuseppe Floresta ◽  
Venerando Pistarà ◽  
Antonio Rescifina

This article reports an alternative method for preparing nitrones using a tetrahedral capsule as a nanoreactor in water. Using the hydrophobic cavity of the capsule allowed us to reduce the reaction times and easily separate the nitrones from the reaction mixture, obtaining reaction yields equal or comparable to those obtained with the methods already reported. Furthermore, at the basis of this methodology, there is an eco-friendly approach carried out that can certainly be extended to other synthesis methods for the preparation of other substrates by exploiting various types of macrocyclic hosts, suitably designed and widely used in supramolecular chemistry.


Sign in / Sign up

Export Citation Format

Share Document