A biomolecule-assisted one-pot synthesis of zinc oxide nanoparticles and its bioconjugate with curcumin for potential multifaceted therapeutic applications

2019 ◽  
Vol 43 (30) ◽  
pp. 11934-11948 ◽  
Author(s):  
Prathap Somu ◽  
Subhankar Paul

Biodegradable ZnO nanoparticles with excellent biocompatibility prepared via a biogenic process have great potential as therapeutic agent-cum-drug carriers for cancer treatment.

2018 ◽  
Vol 16 (1) ◽  
pp. 556-570 ◽  
Author(s):  
Khuram Shahzad Ahmad ◽  
Shaan Bibi Jaffri

AbstractHighly stable semiconducting silver doped zinc oxide nanoparticles have been synthesized via facile, biomimetic and sustainable route, through utilization of Zinc acetate dihydrate (C4H6O4Zn · 2H2O) as host, Silver nitrate (AgNO3) as dopant and phytochemicals of angiospermic medicinal plant Prunus cerasifera as the reducing agents. Synthesis of Ag doped ZnO nanoparticles was done in a one pot synthetic mode by varying the amount of dopant from 0.2 – 2.0%. Synthesized photocatalyst nanoparticles were analyzed via UV-vis, FTIR, XRD and SEM. Commendable alleviation in the direct band gap i.e. 2.81 eV was achieved as a result of doping. Silver doped zinc oxide nanoparticles size ranged between 72.11 – 100 nm with rough surface morphology and higher polydispersity degree. The XRD patterns revealed the hexagonal wurtzite geometry of crystals with an average crystallite size of 2.99 nm. Persistent organic dyes Methyl Orange, Safranin O and Rhodamine B were sustainably photodegraded in direct solar irradiance with remarkable degradation percentages up to 81.76, 74.11 and 85.52% in limited time with pseudo first order reaction kinetics (R2 =0.99, 0.99 and 0.97). Furthermore, efficient inhibition against nine microbes of biomedical and agriculturally significance was achieved. Synthesized nanoparticles are potential green remediators of polluted water and perilous pathogens.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 629
Author(s):  
Helena Moratin ◽  
Pascal Ickrath ◽  
Agmal Scherzad ◽  
Till Jasper Meyer ◽  
Sebastian Naczenski ◽  
...  

Zinc oxide nanoparticles (ZnO-NP) are commonly used for a variety of applications in everyday life. In addition, due to its versatility, nanotechnology supports promising approaches in the medical sector. NP can act as drug-carriers in the context of targeted chemo- or immunotherapy, and might also exhibit autonomous immune-modulatory characteristics. Knowledge of potential immunosuppressive or stimulating effects of NP is indispensable for the safety of consumers as well as patients. In this study, primary human peripheral blood lymphocytes of 9 donors were treated with different sub-cytotoxic concentrations of ZnO-NP for the duration of 1, 2, or 3 days. Flow cytometry was performed to investigate changes in the activation profile and the proportion of T cell subpopulations. ZnO-NP applied in this study did not induce any significant alterations in the examined markers, indicating their lack of impairment in terms of immune modulation. However, physicochemical characteristics exert a major influence on NP-associated bioactivity. To allow a precise simulation of the complex molecular processes of immune modulation, a physiological model including the different components of an immune response is needed.


RSC Advances ◽  
2016 ◽  
Vol 6 (111) ◽  
pp. 110108-110111 ◽  
Author(s):  
Zhenghui Liu ◽  
Huifang Zhou ◽  
Jiefeng Liu ◽  
Xudong Yin ◽  
Yufeng Mao ◽  
...  

Zinc oxide nanoparticles (ZnO NPs) have been monitored in wastewater treatment plants as their potential adverse effects on functional microorganisms have been causing increasing concern.


RSC Advances ◽  
2015 ◽  
Vol 5 (46) ◽  
pp. 36845-36857 ◽  
Author(s):  
Tingting Ren ◽  
Jie Wang ◽  
Jinfeng Yuan ◽  
Mingwang Pan ◽  
Gang Liu ◽  
...  

P(VC-co-AAEM)/ZnO nanoparticles are prepared by a nano-coating method, and the morphology of the raspberry-like particles is adjusted by hydrophilicity and NaOH concentration.


2020 ◽  
Vol 20 (10) ◽  
pp. 5977-5996 ◽  
Author(s):  
Saee Gharpure ◽  
Balaprasad Ankamwar

With increase in incidence of multidrug resistant pathogens, there is a demand to adapt newer approaches in order to combat these diseases as traditional therapy is insufficient for their treatment. Use of nanotechnology provides a promising alternative as antimicrobial agents as against traditional antibiotics. Metal oxides have been exploited for a long times for their antimicrobial properties. Zinc oxide nanoparticles (ZnO NPs) are preferred over other metal oxide nanoparticles because of their bio-compatible nature and excellent antibacterial potentials. The basic mechanism of bactericidal nature of ZnO nanoparticles includes physical contact between ZnO nanoparticles and the bacterial cell wall, generation of reactive oxygen species (ROS) as well as free radicals and release of Zn2+ ions. This review focuses on different synthesis methods of ZnO nanoparticles, various analytical techniques frequently used for testing antibacterial properties, mechanism explaining antibacterial nature of ZnO nanoparticles as well as different factors affecting the antibacterial properties.


Optik ◽  
2020 ◽  
Vol 218 ◽  
pp. 165245 ◽  
Author(s):  
Ying Chun Liu ◽  
JingFeng Li ◽  
JongChan Ahn ◽  
JianYu Pu ◽  
Esrat Jahan Rupa ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (65) ◽  
pp. 53117-53128 ◽  
Author(s):  
Majid Azarang ◽  
Ahmad Shuhaimi ◽  
M. Sookhakian

Zinc oxide nanoparticles–reduced graphene oxide composites with a high degree of crystallinity and high dispersity were successfully synthesized via a facile sol–gel one-pot method in a starch environment as a natural surfactant for the fabrication of solar cell devices.


2018 ◽  
Vol 20 (8) ◽  
pp. 5771-5779 ◽  
Author(s):  
Yanmei Sun ◽  
Dianzhong Wen ◽  
Xuduo Bai

Nonvolatile ternary memory devices were fabricated from the composites polymer blends containing zinc oxide (ZnO) nanoparticles.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Meron Girma Demissie ◽  
Fedlu Kedir Sabir ◽  
Gemechu Deressa Edossa ◽  
Bedasa Abdisa Gonfa

The synthesis of metal oxide nanoparticles with the use of medicinal plant extract is a promising alternative to the conventional chemical method. This work aimed to synthesize zinc oxide nanoparticles using a green approach from indigenous “Koseret” Lippia adoensis leaf extract which is an endemic medicinal plant and cultivated in home gardens of different regions of Ethiopia. The biosynthesized zinc oxide nanoparticles were characterized using thermogravimetric analysis, X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and Fourier transform infrared spectroscopy. Furthermore, this study also evaluated the antibacterial activity of the synthesized ZnO nanoparticles against clinical and standard strains of Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, and Enterococcus faecalis by the disc diffusion method. According to the result of this study, ZnO nanoparticles synthesized using Lippia adoensis leaf extract showed promising result against both Gram-positive and Gram-negative bacterial strains with a maximum inhibition zone of 14 mm and 12 mm, respectively, using uncalcinated form of the synthesized ZnO nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document