scholarly journals Triple network hydrogels (TN gels) prepared by a one-pot, two-step method with high mechanical properties

RSC Advances ◽  
2018 ◽  
Vol 8 (13) ◽  
pp. 6789-6797 ◽  
Author(s):  
Xiangong Wang ◽  
Fang Zhao ◽  
Bo Pang ◽  
Xuping Qin ◽  
Shengyu Feng

TN hydrogels with high mechanical properties are prepared and they have potential application in biomaterials.

1993 ◽  
Vol 58 (11) ◽  
pp. 2642-2650 ◽  
Author(s):  
Zdeněk Kruliš ◽  
Ivan Fortelný ◽  
Josef Kovář

The effect of dynamic curing of PP/EPDM blends with sulfur and thiuram disulfide systems on their mechanical properties was studied. The results were interpreted using the knowledge of the formation of phase structure in the blends during their melt mixing. It was shown, that a sufficiently slow curing reaction is necessary if a high impact strength is to be obtained. Only in such case, a fine and homogeneous dispersion of elastomer can be formed, which is the necessary condition for high impact strength of the blend. Using an inhibitor of curing in the system and a one-step method of dynamic curing leads to an increase in impact strength of blends. From the comparison of shear modulus and impact strength values, it follows that, at the stiffness, the dynamically cured blends have higher impact strength than the uncured ones.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3918
Author(s):  
Anna Dymerska ◽  
Wojciech Kukułka ◽  
Marcin Biegun ◽  
Ewa Mijowska

The renewable energy technologies require electrocatalysts for reactions, such as the oxygen and/or hydrogen evolution reaction (OER/HER). They are complex electrochemical reactions that take place through the direct transfer of electrons. However, mostly they have high over-potentials and slow kinetics, that is why they require electrocatalysts to lower the over-potential of the reactions and enhance the reaction rate. The commercially used catalysts (e.g., ruthenium nanoparticles—Ru, iridium nanoparticles—Ir, and their oxides: RuO2, IrO2, platinum—Pt) contain metals that have poor stability, and are not economically worthwhile for widespread application. Here, we propose the spinel structure of nickel-cobalt oxide (NiCo2O4) fabricated to serve as electrocatalyst for OER. These structures were obtained by a facile two-step method: (1) One-pot solvothermal reaction and subsequently (2) pyrolysis or carbonization, respectively. This material exhibits novel rod-like morphology formed by tiny spheres. The presence of transition metal particles such as Co and Ni due to their conductivity and electron configurations provides a great number of active sites, which brings superior electrochemical performance in oxygen evolution and good stability in long-term tests. Therefore, it is believed that we propose interesting low-cost material that can act as a super stable catalyst in OER.


2021 ◽  
Author(s):  
Zhanyu Jia ◽  
Guangyao Li ◽  
Juan Wang ◽  
shouhua Su ◽  
Jie Wen ◽  
...  

Conductivity, self-healing and moderate mechanical properties are necessary for multifunctional hydrogels which have great potential in health-monitor sensor application. However, the combination of electrical conductivity, self-healing and good mechanical properties...


RSC Advances ◽  
2021 ◽  
Vol 11 (34) ◽  
pp. 20670-20678
Author(s):  
Zhen Shi ◽  
Yazhen Wang ◽  
Shaobo Dong ◽  
Tianyu Lan

Roadmap for the synthesis of Fe3O4–PVA@SH using the step-by-step method and one-pot method.


2013 ◽  
Vol 321-324 ◽  
pp. 209-212
Author(s):  
Chun Yan Xia

nfluences on properties of the concrete highway pavement were analyzed in this paper, and the optimal formulation materials were gotten to use in the repair of used-broken cement blocks in the experiment. Polyurethane concrete material was prepared, combing the ordinary concrete technology with one-step method of the synthesis of polyurethane hard bubble, and then its mechanical properties of the relevant parameters were measured to determine the optimal preparation program. The results show that the polyurethane concrete also has sufficiently good mechanical properties while it has the characteristic of fast patching.


2011 ◽  
Vol 8 (3) ◽  
pp. 188-192 ◽  
Author(s):  
Zheng-Jun Quan ◽  
Rong-Guo Ren ◽  
Yu-Xia Da ◽  
Zhang Zhang ◽  
Xi-Cun Wang

Synthesis ◽  
2020 ◽  
Author(s):  
Zbigniew Wróbel ◽  
Michał Tryniszewski ◽  
Robert Bujok ◽  
Roman Gańczarczyk

Tributyl- or triphenylphosphine promotes a one-pot, three-step method for the synthesis of differently substituted dibenzodiazepinones from N-aryl-2-nitroanilines. Pyridine analogues and the corresponding thiazepinones can also be formed using this method. The process involves deoxygenation of the nitro group, then formation of an iminophosphorane intermediate and its intramolecular condensation with a carboxyl group placed in the N-aryl group. The role of the carboxyl group in the formation of the iminophosphorane and the mode of cyclization are discussed.


2019 ◽  
Vol 956 ◽  
pp. 332-341 ◽  
Author(s):  
Jia Fu

The performance prediction of C-S-H gel is critical to the theoretical research of cement-based materials. In the light of recent computational material technology, modeling from nano-scale to micro-scale to predict mechanical properties of structure has become research hotspots. This paper aims to find the inter-linkages between the monolithic "glouble" C-S-H at nano-scale and the low/high density C-S-H at the micro-scale by step to step method, and to find a reliable experimental verification method. Above all, the basic structure of tobermorite and the "glouble" C-S-H model at nano-scale are discussed. At this scale, a "glouble" C-S-H structure of about 5.5 nm3 was established based on the 11Å tobermorite crystal, and the elastic modulus ​​of the isotropic "glouble" is obtained by simulation. Besides, by considering the effect of porosity on the low/high density of the gel morphology, the C-S-H phase at micro-scale can be reversely characterized by the "glouble". By setting different porosities and using Self-Consistent and Mori-Tanaka schemes, elastic moduli of the low density and high density C-S-H ​​from that of "glouble" are predicted, which are used to compare with the experimental values of the outer and inner C-S-H. Moreover, the nanoindentation simulation is carried out, where the simulated P-h curve is in good agreement with the accurate experimental curve in nanoindentation experiment by the regional indentation technique(RET), thus the rationality of the "glouble" structure modeled is verified and the feasibility of Jennings model is proved. Finally, the studies from the obtained ideal "glouble" model to the C-S-H phase performance has realized the mechanical properties prediction of the C-S-H structure from nano-scale to micro-scale, which has great theoretical significance for the C-S-H structural strengthening research.


Sign in / Sign up

Export Citation Format

Share Document