scholarly journals Modulating the catalytic activity of gold nanoparticles using amine-terminated ligands

2022 ◽  
Author(s):  
Jiangjiang Zhang ◽  
Zhentao Huang ◽  
Yangzhouyun Xie ◽  
Xingyu Jiang

Nanozymes have broad applications in theranostics and point-of-care tests. To enhance the catalytic activity of nanozymes, the conventional strategy is doping metals to form high active nanoalloys. However, high-quality and...

2017 ◽  
Vol 41 (19) ◽  
pp. 11250-11257 ◽  
Author(s):  
Kalvakunta Paul Reddy ◽  
Kanishk Jaiswal ◽  
Biwarup Satpati ◽  
C. Selvaraju ◽  
Arumugam Murugadoss

Acetanilide was used for the synthesis of high quality branched gold NPs exhibiting outstanding catalytic activity toward nitroarenes' reduction.


Nanophotonics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1495-1503 ◽  
Author(s):  
Jiaoqi Huang ◽  
Yang Zhang ◽  
Zhongquan Lin ◽  
Wei Liu ◽  
Xueping Chen ◽  
...  

AbstractDeoxyribonucleic acid (DNA) detection is essential for the accurate and early diagnosis of a disease. In this study, a femtomolar DNA detection method based on the exploitation of the localized surface plasmon (LSP) resonance of gold nanoparticles (AuNPs) was developed. We prepared Poly Ethylen Glycol (PEG) functionalized AuNPs with a specific DNA capture probe (CP) directly modified on the gold surface. Two strategies are proposed using different kinds of CP to detect the target DNA (tDNA). In the first strategy, CP is the complementary of the complete sequence of the DNA (CCP method). For the second strategy, we used two CPs, which were half complementary to tDNA, and these were hybridized with tDNA to form sandwich structures (MIX method). The results showed that our detection methods are highly sensitive and that the limits of detection of 124 am and 2.54 fm tDNA can be reached when using the CCP and MIX methods, respectively. In addition, the specificity of our two strategies is also demonstrated with mismatched DNAs. The proposed method provides a simple, fast, sensitive and specific DNA biosensor, which has the potential to be used for point-of-care tests (POCT).


Author(s):  
Daniel Berman

How can we prevent the rise of resistance to antibiotics? In this video, Daniel Berman,  Nesta Challenges, discusses the global threat of AMR and how prizes like the Longitude Prize can foster the development of rapid diagnostic tests for bacterial infections, helping to contribute towards reducing the global threat of drug resistant bacteria. Daniel outlines how accelerating the development of rapid point-of-care tests will ensure that bacterial infections are treated with the most appropriate antibiotic, at the right time and in the right healthcare setting.


2020 ◽  
Vol 5 (44) ◽  
pp. 13878-13887
Author(s):  
Golnoosh MirMoghtadaei ◽  
Manoj K. Ghosalya ◽  
Luca Artiglia ◽  
Jeroen A. Bokhoven ◽  
Cavus Falamaki

Viruses ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 18
Author(s):  
Michèle Bergmann ◽  
Mike Holzheu ◽  
Yury Zablotski ◽  
Stephanie Speck ◽  
Uwe Truyen ◽  
...  

Measuring antibodies to evaluate dogs´ immunity against canine parvovirus (CPV) is useful to avoid unnecessary re-vaccinations. The study aimed to evaluate the quality and practicability of four point-of-care (POC) tests for detection of anti-CPV antibodies. The sera of 198 client-owned and 43 specific pathogen-free (SPF) dogs were included; virus neutralization was the reference method. Specificity, sensitivity, positive and negative predictive value (PPV and NPV), and overall accuracy (OA) were calculated. Specificity was considered to be the most important indicator for POC test performance. Differences between specificity and sensitivity of POC tests in the sera of all dogs were determined by McNemar, agreement by Cohen´s kappa. Prevalence of anti-CPV antibodies in all dogs was 80% (192/241); in the subgroup of client-owned dogs, it was 97% (192/198); and in the subgroup of SPF dogs, it was 0% (0/43). FASTest® and CanTiCheck® were easiest to perform. Specificity was highest in the CanTiCheck® (overall dogs, 98%; client-owned dogs, 83%; SPF dogs, 100%) and the TiterCHEK® (overall dogs, 96%; client-owned dogs, 67%; SPF dogs, 100%); no significant differences in specificity were observed between the ImmunoComb®, the TiterCHEK®, and the CanTiCheck®. Sensitivity was highest in the FASTest® (overall dogs, 95%; client-owned dogs, 95%) and the CanTiCheck® (overall dogs, 80%; client-owned dogs, 80%); sensitivity of the FASTest® was significantly higher compared to the one of the other three tests (McNemars p-value in each comparison: <0.001). CanTiCheck® would be the POC test of choice when considering specificity and practicability. However, differences in the number of false positive results between CanTiCheck®, TiterCHEK®, and ImmunoComb® were minimal.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Qui Quach ◽  
Erik Biehler ◽  
Ahmed Elzamzami ◽  
Clay Huff ◽  
Julia M. Long ◽  
...  

The current climate crisis warrants investigation into alternative fuel sources. The hydrolysis reaction of an aqueous hydride precursor, and the subsequent production of hydrogen gas, prove to be a viable option. A network of beta-cyclodextrin capped gold nanoparticles (BCD-AuNP) was synthesized and subsequently characterized by Powder X-Ray Diffraction (P-XRD), Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), and Ultraviolet-Visible Spectroscopy (UV-VIS) to confirm the presence of gold nanoparticles as well as their size of approximately 8 nm. The catalytic activity of the nanoparticles was tested in the hydrolysis reaction of sodium borohydride. The gold catalyst performed best at 303 K producing 1.377 mL min−1 mLcat−1 of hydrogen. The activation energy of the catalyst was calculated to be 54.7 kJ/mol. The catalyst resisted degradation in reusability trials, continuing to produce hydrogen gas in up to five trials.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 641
Author(s):  
Lukasz Wolski ◽  
Grzegorz Nowaczyk ◽  
Stefan Jurga ◽  
Maria Ziolek

The aim of the study was to establish the influence of a co-precipitation agent (i.e., NaOH–immediate precipitation; hexamethylenetetramine/urea–gradual precipitation and growth of nanostructures) on the properties and catalytic activity of as-synthesized Au-CeO2 nanocomposites. All catalysts were fully characterized with the use of XRD, nitrogen physisorption, ICP-OES, SEM, HR-TEM, UV-vis, XPS, and tested in low-temperature oxidation of benzyl alcohol as a model oxidation reaction. The results obtained in this study indicated that the type of co-precipitation agent has a significant impact on the growth of gold species. Immediate co-precipitation of Au-CeO2 nanostructures with the use of NaOH allowed obtainment of considerably smaller and more homogeneous in size gold nanoparticles than those formed by gradual co-precipitation and growth of Au-CeO2 nanostructures in the presence of hexamethylenetetramine or urea. In the catalytic tests, it was established that the key factor promoting high activity in low-temperature oxidation of benzyl alcohol was size of gold nanoparticles. The highest conversion of the alcohol was observed for the catalyst containing the smallest Au particle size (i.e., Au-CeO2 nanocomposite prepared with the use of NaOH as a co-precipitation agent).


Sign in / Sign up

Export Citation Format

Share Document